
WIP: Relational Specification of Smart Contracts

Derek Sorensen

August 14, 2022

Abstract

Smart contracts can exhibit high-level behavior that is desirable to formally verify but that can

be difficult to characterize by way of program-level formal specification. In some cases, such behavior

may be easier to understand and articulate in relation to another, simpler smart contract. To enable

this kind of study, we introduce the notion of a morphisms of smart contracts. Morphisms of smart

contracts are well-defined mathematical functions that indicate computational and structural relation-

ships between smart contracts. For complex and high-level contract properties, such as the scope and

limits of a contract’s upgradeability features and the governance model implemented in a DAO, we

show that difficult-to-articulate properties of these contracts can be abstracted and expressed by way

of their structural relationships to simpler contracts. Both of these contract classes have been studied

from, respectively, software engineering and economic, legal, and game-theoretic perspectives, but never

through formal, contract-level specifications as we present here. This work has applications to software

development life cycles, formal methods, and verification-led programming.

1 Introduction

Category theory is very effective in characterizing the behavior of mathematical objects by way of mor-

phisms, where different kinds of morphisms indicate different kinds of structural relationships between ob-

jects. Through universal properties, a particular object can be completely characterized by how it relates to

other objects via morphisms—the mathematical version of, “Tell me who your friends are and I’ll tell you

who you are.” Due to its level of generality, category theory has applications in many areas of mathematics,

physics, and computer science.

The problem that we aim to address here is that, in the formal verification of smart contracts, certain desired

contract behavior is hard to characterize by way of current formal specification methods. The scope and

limits of a smart contract’s upgradeability features and the governance properties of DAOs are two examples

1



of these. Both feature complicated upgrade and at times game-theoretic logic that can be difficult to char-

acterize in a formal specification without giving an example implementation that embodies all the relevant

details [2, 8]. Rather than attempt to fully characterize the behavior of these contracts through a formal

specification, by using morphisms of contracts we can instead abstract this minimal behavioral structure

into a simpler smart contract and prove an invariant relationship between the contracts, indicating that the

abstracted structure—and thus adherence to the specification—always holds. The abstracted contract is in

some sense a highly expressive or embodied specification.

In order to have direct relevance to executable smart contract code, it is important that the theory developed

here be rooted in a formal verification pipeline from which executable code can be extracted which satisfies

the formally proven properties. To this end, we adopt the notion of the blockchain and smart contracts as

abstracted in ConCert, a verification framework for third-generation blockchains written in Coq [3].

2 Morphisms of Smart Contracts

We propose studying smart contracts category-theoretically, by studying morphisms of smart contracts. A

morphism of smart contracts is a function between smart contracts, defined mathematically by using the

provably faithful and executable abstraction from ConCert in the proof assistant Coq [4]. Fundamentally,

a morphism between two smart contracts indicates a structural and computational relationship between

the two objects. As we will show, this can be useful in formally proving compliance with a given contract

(e.g. token) standard. It can also be useful to show that a contract satisfies some minimal architecture

requirements that characterize its upgradeability features or that characterize it as a DAO. It is our hope

that these methods will let us study, characterize, and formally verify with more rigor and clarity some

aspects of contract specification that are hard to express using current methods.

We introduce the following notions:

Morphism of Smart Contracts: On many third-generation blockchains, smart contracts are pure func-

tions. Thus a morphism of smart contracts is a morphism of functions, which can be defined in the usual

way of natural transformations and commutative diagrams. The definition of this morphism is nontrivial,

however, because smart contracts emit operations, and so as functions smart contracts can exhibit general

recursion. The existence of a morphism indicates structural relationships between smart contracts, as in the

following examples of morphisms.

(Strong) Equivalence and Weak Equivalence of Smart Contracts: A morphism of contracts f :

C → D which has a two-sided inverse is an equivalence of contracts. Computationally and semantically,

two equivalent contracts have the same properties, and an equivalence of contracts induces an equivalence

2



of corresponding environments. This simply means that deploying C vs deploying D affect the state of the

blockchain in mathematically equivalent ways.

This is a strong form of equivalence that may not fully capture the notion of equivalence; in particular, it

does not reflect common intuition that a smart contract can be implemented modularly or in a monolithic

contract, and as long as the modular structure is correct, these would be essentially equivalent. We thus

introduce a weaker form of equivalence of contracts, which is weak equivalence, which captures a looser, but

mathematically sound, notion of equivalence of contracts.

Importantly, equivalent contracts are indistinguishable propositionally.

Monomorphism of Contracts: A monomorphism, the categorification of an injective morphism in the

category of sets, indicates a faithful preservation of structure by way of a morphism. In particular, a

monomorphism of contracts C ↪→ D indicates that the computational structure of C is present in D in the

form of a sub contract. One can use a monomorphism, e.g. to show that a particular contract satisfies a

standard by showing a monomorphism from the standard into the contract.

Epimorphisms of Contracts: An epimorphism, the categorification of a surjective morphism in the

category of sets, indicates a compression of structure onto another contract, in our case characterizing

bounds of the contract’s structure. One can use an epimorphism, e.g. to show that a contract conforms

structurally to a skeleton, like a basic upgradeability framework.

3 Contract Upgradeability

Because contracts, once deployed, are immutable, upgradeable contracts are of great interest to most

blockchain-based projects. More than needing a framework for fully upgradeable contracts, it is highly

relevant to understand and be able to mathematically classify the bounds of upgradeability of a given con-

tract. There are, for example, smart contracts for which it is not desirable to be fully upgradeable, or which

need explicit and strict conditions on how an upgrade could be executed and to what extent a contract can

be upgraded.

The study of those properties of a smart contract which are permanent over time is the study of invariants.

However, it can be hard to specify formal invariants via low-level contract properties that guarantee the

high-level, desired contract behavior. Take for example the specification of the Diamond standard, which is

a robust and flexible upgrade standard for Ethereum smart contracts [7]. It is not clear that the specification

itself, despite providing standard interfaces and blocks of code, fully captures the desired, high-level modular

behavior of a system of upgradeable contracts. Indeed, it supplements the textual specification with diagrams,

3



analogies to diamonds, and example implementations to fully communicate the nature of the standard in

such a way that the specification makes sufficient intuitive sense that a person can implement it.

Importantly, the standard comes with reference implementations which, in contrast to the informal specifica-

tion, can capture the full computational meaning of the standard because they are fully implemented. Subtle

details, such as details on data handling and message-passing, are expressed because they are implemented.

Even if the standard itself can be formally verified to be correct and safe, small changes in implementation can

result in fatal errors in unexpected ways. It would be useful, then, for an implementation of the Diamond

standard to show that it satisfies the same structural properties as the standard itself. That is, that its

structure can be formally related to that of a correct implementation of the contract standard in such a way

that key properties are preserved.

This can be done by use of morphisms, in particular by an epimorphism from an implementation onto

the standard that shows that the implementation conforms structurally to the (potentially provably safe)

standard, where the standard is expressed as a specific smart contract instance.

4 Decentralized Autonomous Organizations

DAOs are another example of complex, high-level contract behavior that can be hard to specify and study

rigorously. In many ways similar to upgradeable contracts—because DAO contracts can change over time

in response to governance—the distinguishing feature of DAOs is that they also have a governance model

which dictates how and when certain contract parameters can be changed, or certain functions executed [6].

DAOs often define a set of procedures and incentives so that the organization can be governed effectively.

This, in essence, defines an economic game encoded into the smart contract [5].

Low-level specifications, written as lists of properties of a prospective implementation, do not formally

capture the logic of DAOs. They may give details of an implementation of the implicit game, but they do

not formally define the game being played in the specification. Indeed, for DAOs of great economic interest

and impact, research has been done to discover and characterize the economic game in play [1, 2].

Because of this, a formal specification of a DAO’s governance model may be better expressed via a reference

implementation of the basic or abstracted governance structure. We show how the governance model and

logic implicit to a DAO can be characterized by implementing a generic contract which describes the game

being played and showing a structural relation, again by way of morphisms of contracts, to a DAO that

seeks to implement that game. In particular, we characterize this by a monomorphism from the game into

the contract whose image is a proper subcontract.

4



5 Application to Software Development Life Cycle

The work here has applications to the software development life cycle, both in testing and verification, but

also in the intuitive and natural way that smart contracts are developed in practice. This is because the

theory presented here is abstracted sufficiently so that it can be written and reasoned about on white boards

or on paper, but also expressive enough that it can describe low-level details of a smart contract.

For both upgradeable smart contracts and DAOs, design often starts at a high level. In the case of upgrade-

able contracts, developers may first define the skeleton architecture which allows for upgrades, and then

populate it with the details of a project. For DAOs, it can make sense to start with the governance model

and then move into the details. In both of these cases, if the basic structure can be abstracted and encoded

in a smart contract, they can later formalize that structure and prove the relevant properties of the finalized

smart contract by way of relation through morphisms of contracts.

It is our hope that theories of this nature can help encourage verification-led programming in a natural and

intuitive way.

6 Conclusion

We have shown some preliminary ways in which understanding smart contracts in the context of category

theory can be useful to understand, describe, and rigorously characterize contract behavior in ways that

might be difficult to do with the current tools of formal specification. The extent to which such a study

could both bring formal methods earlier on in the standard software development life cycle and advance our

understanding of smart contract behavior is yet unclear and requires further research.

Future work includes (1) understanding further properties of the category of smart contract and how they

translate into contract behavior and specifications, and (2) studying the category of blockchains, drawing

on the same abstract framework and defining morphisms analogously. We hope that efforts in the latter

will shed light on multi-chain contracts and inter-chain bridges, two instances of blockchain-based software

development that have shown themselves to be particularly error-prone.

5



References

[1] Guillermo Angeris, Alex Evans, and Tarun Chitra. When does the tail wag the dog? curvature and

market making. arXiv preprint arXiv:2012.08040, 2020.

[2] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis of

uniswap markets. arXiv preprint arXiv:1911.03380, 2019.

[3] Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract certification frame-

work in coq. Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs

and Proofs, Jan 2020. URL: http://dx.doi.org/10.1145/3372885.3373829, doi:10.1145/3372885.

3373829.

[4] Mikkel Milo Danil Annenkov and Bas Spitters. Code extraction from coq to ml-like languages. ML’21

at ICFP’21, 2021. URL: https://icfp21.sigplan.org/details/mlfamilyworkshop-2021-papers/

8/Code-Extraction-from-Coq-to-ML-like-languages.

[5] Kedar Iyer and Chris Dannen. Crypto-economics and game theory. In Building Games with Ethereum

Smart Contracts, pages 129–141. Springer, 2018.

[6] Ido Gershtein Michael Zargham Eyal Eithcowich Joshua Z. Tan, Isaac Patka and Sam Furter. Eip working

paper: Decentralized autonomous organizations., 2022. URL: https://daostar.one/EIP.

[7] Nick Mudge. Eip-2535: Diamonds, multi-facet proxy, Feb 2020. URL: https://eips.ethereum.org/

EIPS/eip-2535.

[8] Shuai Wang, Wenwen Ding, Juanjuan Li, Yong Yuan, Liwei Ouyang, and Fei-Yue Wang. Decentralized

autonomous organizations: concept, model, and applications. IEEE Transactions on Computational

Social Systems, 6(5):870–878, 2019.

6

http://dx.doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://icfp21.sigplan.org/details/mlfamilyworkshop-2021-papers/8/Code-Extraction-from-Coq-to-ML-like-languages
https://icfp21.sigplan.org/details/mlfamilyworkshop-2021-papers/8/Code-Extraction-from-Coq-to-ML-like-languages
https://daostar.one/EIP
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535

	Introduction
	Morphisms of Smart Contracts
	Contract Upgradeability
	Decentralized Autonomous Organizations
	Application to Software Development Life Cycle
	Conclusion

