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Stability of Persistent Homology

1 Introduction

One important use of persistent homology in computational algebraic topology is to
identify the general shape or form of a given dataset, or to identify the general shape
or manifold on which points in a dataset might lie. This is useful for many reasons,
for example facial and shape recognition [CCSGMO09].

Given a dataset, hereafter referred to as a point cloud, the goal is to fill in the
empty space between the points and make a resulting topological space in a reasonable
way which will give us information about our dataset. Our process of using the tools of
persistent homology essentially consists of assigning to any dataset a filtered simplicial
complex, called its Rips filtration, and observing how the homology of these spaces
evolves using barcodes or persistence modules. This gives us a directed system of
homology groups. However, in order for it to be useful we ought to have some notion
of stability. That is, we ought to have some notion of what it means for two datasets
to be ‘similar,’ or ‘close together,’ what it means for the corresponding persistence
modules to be ‘similar’ or ‘close together.’

This is precisely where the notion of stability comes in: The goal of our paper is to
show that this process of taking the persistent homology of the Rips filtration is stable
in the sense that a ‘small change’ in point clouds or Rips filtrations will yield a ‘small
change’ in the corresponding persistence modules. If we slightly weaken the result, we
are saying that the map which sends a space to its corresponding persistence module
is continuous. This is important in any applied science; a method of measurement or
analysis is hardly useful if minuscule changes in the data yield wildly different results.

We will treat two distinct stability theorems, Theorems 4.1 and 3.1, which will
bound the distance of either the barcodes or the persistence modules (which we will
show to be essentially equivalent notions) obtained through different filtrations by
the original distance of the two corresponding filtrations.

Although the notions of persistent homology may be used most widely for analyz-
ing point clouds, the theory developed here can be generalized; in the case of Theorem
3.1 to finite metric spaces and the persistent homology of their corresponding Rips
filtrations, and in the case of Theorem 4.1 to any pair of filtrations of an arbitrary
topological space X which are derived from real-valued maps f, g : X → R.

In both cases, however, we construct two separate filtrations of complexes, indexed
over the category (R,≤), and measure the distance of their corresponding persistent
homologies. As it turns out, under certain circumstances we can take any pair of
Rips filtrations of a point cloud and construct a topological space X with maps
f, g : X → R corresponding, respectively, to the two Rips filtrations. This allows
us to show stability of the persistent homology of the point cloud (in the sense of
Theorem 3.1) via stability in the sense of Theorem 4.1. This will not quite show that
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Theorem 3.1 is a special case of Theorem 4.1, but it does support the argument that
the latter theorem is considerably more general than the former.

Throughout this paper we will assume that the reader is familiar with the mate-
rial from an introductory course to algebraic topology and category theory, includ-
ing homology with coefficients from an abelian group, functors, universal properties,
universal objects, abstract simplicial complexes, etc. We also assume the reader is
familiar with tools used in persistent homology, although we will supply the definition
of anything we need aside from the foundational material.

Finally, in this paper unless otherwise stated we will be considering the persistent
homology with coefficients in a field F. The motivation for this is that the kth homol-
ogy group of a topological space X with coefficients in a field is always a vector space

over F; if it is finite-dimensional, then we have that Hk(X,F) =
n
⊕
i=1

F for some n.

This allows us to very concisely consider the persistent homology in terms of F-vector
spaces. Since persistent homology will generally apply to point clouds and their Rips
complexes, we will assume that every homology group which we consider will be a
finite-dimensional F vector space. We will denote the category of finite-dimensional
vector spaces over F as VecF or, abusing notation, simply as Vec.

2 Definitions and Metrics

Let F be a field. Recall that, for a category J , a diagram of shape J in a category
C is a functor J → C. Also, recall that for categories C and D, CD is the category of
diagrams F : C → D. Finally, we denote by [n] the full subcategory of the category
(Z,≤) which consists of objects 1, ..., n ∈ Z and morphisms i ≤ j for all 1 ≤ i ≤ j ≤ n.

Definition 2.1 (Persistence Module). A persistence module is any diagram in Vec(R,≤),
Vec[n] or Vec(Z+,≤).

One can think of a persistence module as a special kind of directed system of
finite-dimensional F vector spaces. Recall from the introduction that a point cloud is
a collection of discrete data points, often in Rd. In particular, point clouds often form
finite metric spaces. It is for these spaces that we will define a filtration of topological
spaces in Top(R,≤) as follows:

Definition 2.2 (Rips Filtration of a Discrete Metric Space). Let (X, dX) be a discrete
metric space endowed with a real-valued labeling f : X → R (note that any choice of
f is continuous because X is discrete). Let ε ∈ R. Then the Rips complex Rε(X, dX)
is the abstract simplicial complex whose simplices are of the form

σ ⊆ Xsuch that ∃ some ε-ball U ⊆ X such that σ ⊆ U.

The Rips filtration of (X, dX) with regard to the map f and denoted R(X, dX , f) is
the filtration of Rips complexes given by

{Rε(Xε)}ε∈R where Xε := f−1((−∞, ε]) ⊆ X
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In order to properly continue into our two stability theorems, or even think about
stability at all, we will need to define a few different metrics so that we can sensi-
bly talk about what it means for two barcodes or maps in Sets(X,R) to be “close
together.” We will define metrics on Sets(X,R), on compact metric spaces and on
persistence modules. By Sets(X,R) we mean the set of maps X → R where X is the
underlying set of an object in Top and R is considered as a set, and not a topological
space.

The metric on Sets(X,R) is quite standard and straightforward, and given by

d∞(f, g) = ‖f − g‖∞ := sup
x∈X
|f(x)− g(x)|. (1)

Note that if X is compact and f is continuous, ‖f − g‖∞ is actually maxx∈X |f(x)−
g(x)|. It is a standard result that this results in a metric on Sets(X,R).

2.1 Gromov-Hausdorff Metric

Our next task is to define a metric which will be suitable for the Rips complexes
of finite metric spaces. We would also like to somehow incorporate into this metric
arbitrary real-valued labelings of X, or continuous maps f : X → R. As it turns out,
the most natural metric for this will readily generalize to a metric on compact metric
spaces, so for the sake of generality we will weaken our hypotheses and let X simply
be a compact metric space.

Following the conventions of [CCSGMO09], we define a category X1 with objects
of the form (X, dX , f), where (X, dX) is a compact metric space and f : X → R is
continuous. A morphism between (X, dX , f) and (Y, dY , g) is a morphism ϕ : X → Y
of compact metric spaces which is compatible with the maps f and g, i.e. f = g ◦ ϕ.
Thus the identity map is simply id : X → X, composition of maps is well-defined and
an isomorphism is simply a morphism which is also an isometry of metric spaces.

By defining a metric on X1, we define a metric on any subset of the class of objects
of X1. In order to do so, we will first have to give a brief definition.

Definition 2.3. A correspondence between two sets X and Y is a subset C ⊆ X ×Y
such that the canonical projection maps πX : C → X and πY : C → Y are surjective.
This yields a category C with objects as sets and morphisms as correspondences. Thus
the set of all correspondences between X and Y is denoted C(X, Y ).

Definition 2.4 (Gromov-Hausdorff Metric on X1). Let (X, dX), (Y, dY ) be compact
metric spaces endowed with maps f : X → R and g : Y → R. Then we define the
Gromov-Hausdorff metric on X1 as follows:

d1
GH((X, dX , f), (Y, dY , g)) := (2)

inf
C∈C(X,Y )

max{1

2
sup

(x,y),(x′,y′)∈C
|dX(x, x′)− dY (y, y′)|; sup

(x,y)∈C
|f(x)− g(y)|}
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This metric looks a little bit perplexing, but we hope to motivate its definition.
Notice that if we consider the diagonal correspondence, C = {(x, x) |x ∈ X}, then
for all (x, x), (x′, x′) ∈ C,

sup
(x,x),(x′,x′)∈C

|dX(x, x′)− dY (x, x′)| = 0

and so the right-hand side of (2) becomes

sup
(x,x)∈C

|f(x)− g(x)|,

which is precisely the equation for ‖f − g‖∞.
Now in the case that f = g ≡ 0,

d1
GH((X, dX , f), (Y, dY , g)) = inf

C∈C(X,Y )

1

2
sup

(x,y),(x′,y′)∈C
|dX(x, x′)− dY (y, y′)|. (3)

It turns out that the right-hand side of (3) is a metric on compact metric spaces,
which we will denote as simply dGH. As given in (3), the metric gives essentially no
intuition on what it might be measuring. There is an equivalent definition (which
is in practice much more difficult to use) that will shed some light on what dGH is
actually doing.

This metric will measure, using the Hausdorff distance, how similarly X and Y
can be embedded into some larger metric space (Z, dZ). Recall that the Hausdorff
distance of two subsets X and Y of (Z, dZ) is given by

dZH(X, Y ) = max{sup
x∈X

inf
y∈Y

dZ(x, y); sup
y∈Y

inf
x∈X

dZ(x, y)} (4)

Definition 2.5 (Gromov-Hausdorff Metric). The Gromov-Hausdorff distance between
compact metric spaces (X, dx) and (Y, dY ) is give by:

dGH((X, dx), (Y, dY )) := inf
(Z,dZ),γX ,γY

dZH(γX(X), γY (Y )) (5)

where (Z, dZ) ranges over all metric spaces and γX , γY range over isometric embed-
dings of (X, dX) and (Y, dY ) into (Z, dZ).

The definition in (5), intuitively, shows us that dGH is measuring how far apart
(X, dX) and (Y, dY ) are from being isometric. These two definitions of dGH are equiv-
alent by Theorem 7.3.25 of [BBI01]. Furthermore, dGH defines a metric on isometry
classes of compact metric spaces by Theorem 7.3.30 of [BBI01] and d1

GH defines a
metric on isomorphism classes of the objects of X1 by Theorem 2.5 in [CCSGMO09].

2.2 Metrics on Persistence Modules

The final metrics which we will define will be on persistence modules of filtered topo-
logical spaces in Top(R,≤). The first will be the more general inteleaving distance,
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which measures distance on diagrams of the form D(R,≤), for any category D. Using
the interleaving metric we will define the bottleneck distance dB, which gives a metric
on barcodes. These two metrics will turn out to be equivalent in the case that our
barcodes are finite. Since our main focus of this paper is to analyze the persistent
homology of finite metric spaces (point clouds), we are guaranteed that the barcode
corresponding to the persistent homology will be finite in the cases which we’re in-
terested in. For that reason, after we prove the equivalence of metrics on diagrams
of finite type at the end of this section, we will work entirely with persistence mod-
ules and the interleaving metric, noting that all of the theorems can be equivalently
stated simply using the bottleneck distance and barcodes. This will give us a more
general approach to our subject, and in particular will make comparing our two main
theorems much simpler.

Recall that a diagram F ∈ Vec(R,≤) is of finite type if F =
n
⊕
k=1

χIk , where Ik is

an interval in R and χIk ∈ Vec(R,≤) is a persistence module defined by χIk(a) = 0 if
a 6∈ Ik, and F if a ∈ Ik, and χIk(a ≤ b) = 0 if a or b 6∈ Ik and is an iso otherwise.

We will quickly define two maps before giving the definition of the interleaving
metric. Given ε > 0, let Tε : (R,≤) → (R,≤) be the functor given by a 7→ a + ε
and let ηε : Id(R,≤) ⇒ Tε be the natural transformation given by component maps
ηε(a) : a ≤ a+ ε. We define the interleaving metric, d, as follows:

Definition 2.6 (Interleaving Metric). Let D be any category, and let F,G ∈ D(R,≤).
An ε−interleaving of F and G consists of natural transformation ϕ : F ⇒ GTε and
ψ : G⇒ FTε such that the following diagrams commute:

F (a) F (a+ 2ε) F (a+ ε)

G(a+ ε) G(a) G(a+ 2ε)

ϕ(a)

ϕ(a+ε)

ψ(a+ε)

ψ(a)

i.e. such that (ψTε)ϕ = Fη2ε and (ϕTε)ψ = Gη2ε. If there is an ε−interleaving
between F and G, we say that F and G are ε−interleaved.

Then define the interleaving metric as d(F,G) := inf{ε ≥ 0 |F and G are ε−interleaved}.
We write d(F,G) =∞ if there is no ε ≥ 0 for which F and G are ε−interleaved.

We saw in our course that d defined above is a pseudometric on any subset of
D(R,≤), and if we identify the diagrams F and G which satisfy d(F,G) = 0, we have a
metric on the resulting equivalence classes. Furthermore, in the homework exercises
we proved that for any functor H : D → C,

d(HF,HG) ≤ d(F,G). (6)

We can use the interleaving metric to define the bottleneck distance, which is a
metric on barcodes. More generally, it’s a metric on multisets. In the end, we will
care only about finite barcodes (which correspond to diagrams of finite type), but in
the meantime we can define dB on any pair of multisets. In the following definition,
we will consider any persistence module in F ∈ Vec(R,≤) equivalently as a barcode,
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where the barcode of F is the multiset {Iα}α∈P , where F = ⊕
α∈P

χIα . We also note

here that we are following the conventions and definitions in [BS14].

Definition 2.7 (Bottleneck Distance). If A and B are multisets, then define AB
to be the disjoint union of A and the multiset containing the empty interval ∅ with
cardinality |B|. A partial matching between two multisets A and B is a bijection
f : AB → BA and is written f : A
 B.

Then the bottleneck distance dB between A and B is given by

dB(A,B) := inf
f :A
B

sup
IA∈A

d(χI , χf(I))

where d(χI , χf(I)) is the interleaving distance.

As stated before, we can identify these metrics in the case that our barcodes are
finite (and thus the corresponding diagrams are of finite type). For all intents and
purposes of this analysis, this suffices and so we will do so. After the proof of the
following theorem, instead of considering barcodes with the bottleneck distance, we
will only consider diagrams of finite type with the interleaving distance. This will
make our comparison in Section 5 much more straightforward.

Theorem 2.1 (Theorem 4.16 in [BS14]). Let B be the set of finite barcodes, dB be
the bottleneck distance and d the interleaving distance. Then χ : B → Vec(R,≤) given
by χ({Ik}nk=1) = ⊕nk=1χIk is an isometric embedding of metric spaces

χ : (B, dB) ↪−→ (Vec(R,≤), d). (7)

Proof. We know already from Theorem 4.4 of [CCSGMO09] that

dB(B,B′) ≤ d(χ(B), χ(B′)).

So to show the isometric embedding we only need to show that

d(χ(B), χ(B′)) ≤ dB(B,B′). (8)

Note that the inequality in (8) is trivial if dB(B,B′) = ∞. So we assume that
dB(B,B′) <∞. Thus there is some map f : B 
 B′ such that supI∈BB′ d(χI , χf(I)) =

γ <∞ (recall the notation of BB′ and B′B, where f is a bijection BB′
∼→ B′B). Note

that for all I ∈ BB′ , by definition d(χI , χf(I)) ≤ γ. Thus if we take some ε > γ, χI
and χf(I) are ε−interleaved. Since for any F ∈ Vect(R,≤), F ∼= F ⊕ χ∅, it follows that
χ(B) ∼= ⊕

I∈BB′
χI and χ(B′) ∼= ⊕

I∈B′
B

χI . Corollary 7.11 in [BS14] gives us that

d( ⊕
I∈BB′

χI , ⊕
I∈B′

B

χI) ≤ sup
I∈BB′

d(χI , χf(I)),

and so since d(χI , χf(I)) ≤ ε, we have that d( ⊕
I∈BB′

χI , ⊕
I∈B′

B

χI) = d(χ(B), χ(B′)) ≤ ε.

We can run this process over all f : B 
 B′, and by definition of dB we have that
d(χ(B), χ(B′)) ≤ ε for all ε > dB(B,B′). This gives straight away that (8) holds by
definition of d(χ(B), χ(B′)) as an infemum, and we have our result.
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3 Stability Theorem for Point Clouds

Now that we have the definitions and some basic results about our metrics, we are
finally ready to look at our stability theorems. We will first treat the less general
case—that of the stability theorem for point clouds—and then move onto the more
general result.

For intuition, the way that we are going to present the first result on stability is
by defining the function

Ψk : (X1, d
1
GH)→ (Vec(R,≤), d) (9)

which maps a finite metric space (X, dX) to the kth persistence diagram ofR(X, dX , f).
Note that this is not a functor, but rather strictly a map between collections of ob-
jects. Since we have the metrics d1

GH and d, we can consider whether or not Ψk is
continuous—i.e. whether a small change in (X, dX , f) will result in a small change
in its corresponding persistent module. Our main result will will give an bound on
the distance between persistent modules in terms of the Gromov-Hausdorff distance
of the original spaces, which implies immediately that Ψk is continuous for all k ∈ N.

Theorem 3.1. Let (X, dX , f), (Y, dY , g) ∈ X1, where X and Y are finite metric
spaces (such as a point cloud in Rn). Then

d(R(X, dX , f),R(Y, dY , g)) ≤ d1
GH((X, dX , f), (Y, dY , g)). (10)

Corollary 3.1.1. By Equation 6, for any category D and functor H : Top→ D,

d(H(R(X, dX , f)), H(R(Y, dY , g))) ≤ d1
GH((X, dX , f), (Y, dY , g))

In particular, if we choose H to be the kth homology functor Hk, then Theorem
3.1 gives us stability in taking the persistence modules of our filtered complexes
R(X, dX , f) and R(Y, dY , g).

Corollary 3.1.2. Ψk is continuous for all k ∈ N.

As long as our metrics are sensible, the notion that Ψk is continuous means that
small changes in the data cloud will result in small changes in the corresponding
persistent homology of our space. That is, by varying (X, dX , f) or (Y, dY , g) around
in an ε−ball, we can be sure that their corresponding barcodes will also vary in an
ε−ball in the space of finite barcodes. The inequality is thus quite a bit stronger than
simply stating that Ψk is continuous for all k. Perhaps the best thing that comes out
of this is that it indicates that this method of analyzing a point cloud is nontrivial,
and could even be useful.

Before proceeding with the proof of Theorem 3.1, we include here a brief sketch of
its main points. We first let ε = d1

GH((X, dX , f), (Y, dY , g)), with the intent to show
that d(R(X, dX , f),R(Y, dY , g)) ≤ ε. The first step is to find an isometric embedding
of both (X, dX) and (Y, dY ) into R with the l∞ metric. We do this in order to be
able to compare the filtrations {γ ◦ γX(Xα)α}α>0 and {γ ◦ γY (Yα)α}α>0 which we

7



define in the proof, and show that they are ε−interleaved. The final step is to show,
through a string of theorems and lemmas, that the filtrations {γ ◦ γX(Xα)α}α>0 and
{γ ◦ γY (Yα)α}α>0 being ε−interleaved implies that the Rips filtrations R(X, dX , f)
and R(Y, dY , g) are ε−interleaved as well. We proceed now with the proof.

Proof of Theorem 3.1. Let ε = d1
GH((X, dX , f), (Y, dY , g)) and recall the notation

Xα := f−1(−∞, α] and Yα := g−1(−∞, α] for any α ∈ R. Since both X and Y
are finite, the infemum given in the definition of d1

GH is actually a minimum, achieved
by some C ∈ C(X, Y ).

We note that in the proof of Theorem 7.3.25 of [BBI01] it shows that for any
C ∈ C(X, Y ), there exists a metric dZ on the disjoint union Z = X tY such that the
canonical inclusions γX : X ↪−→ Z and γY : Y ↪−→ Z are isometric embeddings, and
such that the following inequalities hold for all (x, y) ∈ C:

dZ(γX(x), γY (y)) ≤ 1

2
sup

(x,y),(x′,y′)∈C
|dX(x, x′)− dY (y, y′)| (11)

|f(x)− g(y)| ≤ ‖f − g‖`∞(C) := sup
(x,y)∈C

|f(x)− g(y)|. (12)

By definition of d1
GH, (11) and (12) give us that dZ(γX(x), γY (y)), |f(x)− g(y)| ≤ ε.

Now note that (γX(X)∪γY (Y ), dZ) is a finite metric space. We will cite Lemma 2.8
of [CCSGMO09] here, which says that any finite metric space of cardinality n can be
isometrically embedded into Rn endowed with the l∞ metric. Thus if n = #X + #Y ,
we have an isometric embedding γ : (γX(X) ∪ γY (Y ), dZ) ↪−→ (Rn, l∞).

This gives us that γ◦γX and γ◦γY are isometric embeddings of (X, dX) and (Y, dY )
respectively into (R, l∞). Furthermore, because γ ◦ γX and γ ◦ γY are isometries, for
all (x, y) ∈ C, we have that

‖γ ◦ γX(x)− γ ◦ γY (y)‖∞ ≤ ε.

We will denote by γ ◦ γX(X)α the union of the open l∞ balls of radius α centered
at each point of γ ◦ γX(X). Our goal is to show that {γ ◦ γX(Xα)α}α>0 and {γ ◦
γY (Yα)α}α>0 are ε−interleaved.

To do so, suppose p ∈ γ ◦ γX(Xα)α, and note that there must exist some x ∈ X
such that ‖p− γ ◦ γX(x)‖∞ ≤ α by definition. Then take y ∈ Y such that (x, y) ∈ C.
By our embedding, we have that ‖γ ◦ γX(x) − γ ◦ γY (y)‖∞ ≤ ε, as well as that
g(y) ≤ f(x) + ε ≤ α + ε. Thus y ∈ Yα+ε, and the triangle inequality gives us that

‖p− γ ◦ γY (y)‖∞ = ‖p− γ ◦ γY (y) + γ ◦ γX(x)− γ ◦ γX(x)‖∞ ≤

‖γ ◦ γX(x)− γ ◦ γY (y)‖∞ + ‖p− γ ◦ γX(x)‖∞ = α + ε.

Thus p ∈ γ ◦ γY (Yα+ε)
α+ε, and we have that γ ◦ γX(Xα)α ⊆ γ ◦ γY (Yα+ε)

α+ε. By a
symmetric argument, γ◦γY (Yα+ε)

α+ε ⊆ γ◦γX(Xα+2ε)
α+2ε. Thus we get the inclusions

γ ◦ γX(Xα)α ⊆ γ ◦ γY (Yα+ε)
α+ε ⊆ γ ◦ γX(Xα+2ε)

α+2ε ⊆ γ ◦ γY (Yα+3ε)
α+3ε. (13)

8



With the inclusion maps as our natural transformations φ and ψ, (13) shows that
they satisfy the two diagrams for an ε−interleaving, as desired, and we have that
{γ ◦ γX(Xα)α}α>0 and {γ ◦ γY (Yα)α}α>0 are ε−interleaved.

As it turns out, by a string of theorems and lemmas, this is sufficient to show
that the Rips filtrations R(X, dX , f) and R(Y, dY , g) are ε−close, as desired. We
get by Theorem 4.4 of [CCSGGO09] that, under the bottleneck distance, the persis-
tence diagrams of {γ◦γX(Xα)α}α>0 and {γ◦γY (Yα)α}α>0 are ε−close. Lemma 2.10 of
[CCSGMO09] gives us the same result for the Čech filtrations {Cα(γ◦γX(Xα),Rn, l∞)}α>0

and {Cα(γ ◦ γY (Yα),Rn, l∞)}α>0. And Lemma 2.9 of [CCSGMO09] gives the same
result for the persistence diagrams of the Rips filtrations {Rα(γ ◦ γX(Xα), l∞)}α>0

and {Rα(γ ◦ γY (Yα), l∞)}α>0. Since γ ◦ γX and γ ◦ γY are isometric embeddings of
(X, dX) and (Y, dY ) respectively, these are precisely the Rips filtrations R(X, dX , f)
and R(Y, dY , g), and we have our result.

4 Stability Theorem for Level Sets

We will now step into quite a bit more generality as we consider the stability theo-
rem for level sets. This theorem has quite a different feel to it. It is true that we
are comparing the persistence module of different filtrations of a topological space.
However, our filtrations are defined differently in this case. Instead of taking the Rips
filtration, we will filter a topological space X with a (not necessarily continuous) map
f : X → R via the filter Xε = f−1(−∞, ε] for ε ∈ R.

This gives us a diagram F ∈ Top(R,≤) of the form F (a) = Xa and F (a ≤ b) =
(Xa ↪−→ Xb), the inclusion map. Just like before, we can calculate the distance between
the persistence modules of diagrams F induced by f : X → R and G induced by
g : X → R and see whether or not this process of assigning to a map in Sets(X,R)
to a diagram in Vec(R,≤) is continuous. We actually get an equally strong result as
we did in Section 3 in the sense of bounding the distance persistence diagrams by the
distance of the original maps.

But this case is much better; before we worked strictly in the case that X was a
finite metric space and we wanted to measure persistence modules on the Rips filtra-
tion of X. This time we can define essentially any filtration we please on a topological
space, measure its distance, and then instead of being restricted to only persistence
modules, we can bound the distance of the image of our filtrations under any func-
tor Top → D, for an arbitrary category D. Thus we can apply our stability result
to the singular homology functor H : Top → grAb with coefficients in any abelian
group, homotopy groups, etc. It is probably the most computationally reasonable
to use the singular homology functor with coefficients in F2, but this theorem is in
full generality in the best sense. We can truly consider any functor H with domain
Top(R,≤). Regardless of whether or not this generality provides more practical uses of
the theory, this is a beautiful result for the theory.

Theorem 4.1. Consider any X ∈ Top and let f and g be (not necessarily continuous)
maps X → R. Let H : Top → D be any functor, and define F ∈ Top(R,≤) to be
F (a) = f−1(−∞, a] and G likewise using g. Then
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d(HF,HG) ≤ ‖f − g‖∞

Proof. Let ε = ‖f − g‖∞. Then because f and g are ε−close,

F (a) = f−1(−∞, a] ⊆ g−1(−∞, a+ ε] = G(a+ ε)

and, likewise, G(a) ⊆ F (a + ε). Thus F and G are ε−interleaved, giving that HF
and GF are as well, and thus giving that d(HF,HG) ≤ ‖f − g‖∞.

Just like in Section 3 we can define a map for X ∈ Top and functor H : Top→ D:

ΦX : Sets(X,R)→ D(R,≤) (14)

which is continuous.

5 Revisiting Stability of Point Clouds

We would like to show in this section how Theorem 3.1 can be thought of as a special
case of Theorem 4.1. We will begin by considering a compact metric space X and a
continuous map f : X → R. Note that since X is compact and f continuous, f is
bounded. So for α small enough, we have that Rα(Xα) = ∅. For α large enough, we
have that Rα(Xα) is a constant topological space X ′ for all β ≥ α.

Thus our filtration R(X, dX , f) stabilizes as α goes to infinity. Now take X ′ and
define a map f ′ : X ′ → R which sends an element x ∈ X ′ to

inf{α ∈ R |x ∈ Rα(Xα)}.

Note that {α ∈ R |x ∈ Rα(Xα)} is bounded below, so this map (which is probably
not continuous) is well-defined, and thus defines a filtration on X ′ given by the level
sets X ′α = (f ′)−1(−∞, α]. Note further that when restricted to X ⊆ X ′, f ′|X = f .

Using the notation from Section 4, we have a diagram F ′ ∈ Top(R,≤), induced by
f ′, and given by F ′(a) = (f ′)−1(−∞, a]. Furthermore, R(X, dX , f) ∈ Top(R,≤) and so
we can compare the two filtrations. It is possible to that they might differ at some
points because of the definition, but it is easy to see that

d(R(X, dX , f), F ′) = 0.

Now consider g : X → R. Note that, R(X, dX , g) stabilizes to the same X ′ as
R(X, dX , f) just by the definition of the Rips filtration and so, in the same way as
we did before, we can construct g′ : X ′ → R and obtain a diagram G′ ∈ Top(R,≤).
Then we have that

d(R(X, dX , f),R(X, dX , g)) ≤ d(R(X, dX , f), G′) + d(G′,R(X, dX , g))

= d(R(X, dX , f), G′) ≤ d(R(X, dX , f), F ′) + d(F ′, G′) = d(F ′, G′)
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and thus by Theorem 4.1,

d(R(X, dX , f),R(X, dX , g)) ≤ d(F ′, G′) ≤ ‖f ′ − g′‖∞. (15)

We would like to say that because (15) gives stability, Theorem 3.1 is a special
case of our more general Theorem 4.1. And in a sense this is true for the case we
have considered of comparing R(X, dX , f) and R(Y, dY , g), where (X, dX) = (Y, dY ).
In this case, the essence of Theorem 3.1 is captured by Theorem 4.1.

However, we run into a slight problem here. Since f ′|X = f and g′|X = g, we have
that

‖f − g‖∞ ≤ ‖f ′ − g′‖∞,

simply because f ′ and g′ are defined on a larger domain. Recall that on the diagonal
correspondence C,

‖f − g‖∞ = max{1

2
sup

(x,x),(y,y)∈C
|dx(x, x)− dy(y, y)|; sup

(x,x)∈C
|f(x)− g(x)|}. (16)

If we recall that d1
GH is defined to be the infemum of such values given in (16), ranging

over all correspondences in C(X,X), we have that

d1
GH(R(X, dX , f),R(X, dX , g)) ≤ ‖f − g‖∞ ≤ ‖f ′ − g′‖∞.

Thus we might compare Theorems 3.1 and 4.1 by saying that Theorem 3.1 puts
a lower bound than Theorem 4.1 does on d(R(X, dX , f),R(Y, dY , g)) in the special
case to which Theorem 3.1 applies (i.e. when (X, dX) = (Y, dY )).

We can even compare our theorems on a broader spectrum, where we compare
R(X, dX , f) and R(Y, dY , g) with (X, dX) 6= (Y, dY ). We know by the proof of The-
orem 3.1 that we can embed both X and Y into (Rn, l∞), where n = #X + #Y ,
and we get a point cloud Z in Rm for some m ≤ n. Since both X and Y are finite
metric spaces, both f and g are bounded above by some N . Choose M > N and then
extend f and g to Z by letting both f and g take the value of M on any point of Z
which does not lie in the embedding of, respectively, X or Y . This gives us a filtered
complex like in the case above, and again we get the stability given by Theorem 3.1
using Theorem 4.1—however, just as before, the bound given in Theorem 3.1 is better
than the bound given in Theorem 4.1.

6 Conclusion

In this document, we have introduced notions for distance on diagrams of the form
C(R,≤), on finite metric spaces endowed with continuous maps, and on maps in Sets(X,R)
for a metric space X. This has allowed us to define notions of stability, and then to
introduce two different theorems on stability. The first, Theorem 3.1, shows that for
(X, dX , f), (Y, dY , g) ∈ X1,

d(R(X, dX , f),R(Y, dY , g)) ≤ d1
GH((X, dX , f), (Y, dY , g)).
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This in particular shows that the interleaving distance between the kth persistence
homology diagrams Hk(R(X, dX , f),F) and Hk(R(Y, dY , g),F) is bounded above by
d1
GH((X, dX , f), (Y, dY , g)). This gives us that taking persistent homology of (X, dX , f)

can be thought of as a continuous operation, meaning that small changes in (X, dX , f)
with regard to the metric d1

GH will result in possibly smaller changes inHk(R(X, dX , f),F)
with regard to the interleaving distance on diagrams Top(R,≤).

We then showed a more general result, Theorem 4.1, which defines filtrations F
(resp. G) on any topological space X endowed with a (not necessarily continuous)
map f : X → R (resp. g : X → R) and shows that, for any category D and functor
H : Top→ D:

d(HF,HG) ≤ ‖f − g‖∞.

Again we can consider H as the kth homology functor, Hk, and we get the same
notions of continuity that our previous theorem gave us.

These theorems are slightly different, but can be compared as we showed in Section
5. It turns out that Theorem 3.1 is not quite a special case of Theorem 4.1, but instead
puts a lower bound on d(R(X, dX , f),R(Y, dY , g)) the special case that we consider
the filtered complexes R(X, dX , f) and R(Y, dY , g).
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