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Abstract

The tautological ring of a manifold M , denoted R∗(M), is a ring generated by

generalized Mumford-Miller-Morita classes, which are characteristic classes of

smooth fiber bundles with fiber M . These characteristic classes are defined via

the smooth structure on the bundle. We study the tautological ring of g(Sd×Sd)
modulo the nilradical

√
0. Our first objective is to give the proof of [GGRW17,

Theorem 1.1], which gives a complete description of R∗(g(Sd×Sd))/
√

0 when d

is odd. We then give insights into the possibility of proving a similar result for

the case that d is even. Our main contribution to the problem comes in Section

6, where we prove that a crucial supporting theorem is false when d is even,

showing that the methods used in the proof of [GGRW17, Theorem 1.1] cannot

be used in this case. We finish by proposing some strategies for moving forward

to prove an analogous result to [GGRW17, Theorem 1.1] in the case that d is

even.
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1 Introduction

Consider a smooth manifold M . The tautological ring of M , written R∗(M), is a

ring generated by generalized Mumford-Miller-Morita classes. These are characteristic

classes of smooth fiber bundles with fiber M , defined via the smooth structure on the

bundle (see §1.1). Tautological rings are known for some cases, such as when M = Sn.

However, there are still many basic examples of manifolds for which the tautological ring

remains unknown. As noted in [RW16], the simplest of these is CP 2. The connected

sum of g copies of Sd × Sd, which we denote simply as g(Sd × Sd), is also one of these

spaces. It is to this class of spaces which we will devote our attention.

In an effort to understand the tautological ring R∗(g(Sd × Sd)), we will study the

quotient ring R∗(g(Sd × Sd))/
√

0, where
√

0 denotes the nilradical. We will devote

most of our attention to proving the main result of [GGRW17], which gives a complete

description of R∗(g(Sd × Sd))/
√

0 when d is odd and for all g. As we will see, many of

the results in [GGRW17] can be applied to the case that d is even, but not sufficiently

to give a complete description. As we proceed through the proof, we will make notes

when a particular result does not apply to the d even case and show the reasons for

this. The arguments for much of this proof rely heavily on the main technical result of

[Gri13] which, if it could be generalized to the d even case, would make a substantial

contribution to understanding R∗(g(Sd × Sd))/
√

0 if d is even. Our contribution to

this problem is showing, in Section 6, that this result is false if d is not odd, and thus

cannot be generalized in this way. We cannot yet give any conclusive results about the

structure of R∗(g(Sn × Sn))/
√

0 when n is even; we will, however, give some insights

and ideas into what might be done to continue research on this topic.

Working with characteristic classes of manifolds requires the understanding of sev-

eral preliminary subjects. Here at the beginning we will only cover some of the essential

definitions and background which we need, assuming the reader is familiar with fiber

bundles, fibrations, principal G−bundles, characteristic classes, cohomology with local

coefficients and the Serre spectral sequence. For the reader who is unfamiliar with

any of these subjects, we have provided a brief introduction to each of them in the

Appendix, as well as references from which the reader can read further.

We will proceed as follows: We first give some preliminary definitions in Section 1.1.

In Section 2, we will introduce the main result of [GGRW17], given here as Theorem

2.1, and give a proof relying on two results given in the same paper. We will then

focus on one of these results, Proposition 2.2, and its proof. Sections 4 and 5 will be

devoted to various theorems and lemmas which constitute the proof of Proposition 2.2.
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In Section 6 we show that one of the primary results used in the d odd case is false when

d is even, and in Section 7 we discuss the possible avenues for research in the future.

As promised, an appendix follows. Our goal is to give sufficient background material

and ideas for proceeding with this problem that any reader could begin research after

having thoroughly studied this document.

1.1 Preliminary Definitions

We will begin by defining our main object of study: the tautological ring of a smooth

manifold M , denoted R∗(M). As we noted in the introduction, tautological rings are

generated by certain characteristic classes of smooth manifold bundles, called general-

ized Miller-Morita-Mumford classes, or kappa classes. In particular, for the definition

of R∗(M) we are interested in the kappa classes of smooth fiber bundles with fiber M .

Thus suppose that M is a d-dimensional smooth manifold, and that Ek+d and Bk

are connected compact smooth oriented manifold bundles. Let π : E → B be a smooth

fiber bundle with fiber Md. Inherent to the smooth structure of π is a vector bundle

over E, called the vertical tangent bundle, defined as Tπ := ker(Dπ) (see Example A.10).

The characteristic classes of Tπ are given by H∗(BSO(d);Q).

Then taking an element c ∈ H∗(BSO(d);Q), we define the generalized Miller-

Morita-Mumford class (or kappa class) by use of a map π! : H∗(E;Q) → H∗−d(B;Q)

called the pushforward map. In the context of our work there are two equivalent ways

to define this map. The first, as is done in [GGRW17] and [RW16], is by use of a fiber

integral. For each c ∈ H∗(BSO(d);Q), we can get a class in H∗−d(B;Q) given by

κc(π) =

∫
π

c(Tπ) ∈ H∗−d(B;Q).

Using this, π! is given by c 7→ κc(π). The other definition, as given in [Gri13], is more

algebraic and makes use of the Serre spectral sequence. The definition of π! using this

method is rather lengthy, so we will say no more here and fully address the definition

in Section 4.

These are the simplest characteristic classes of bundles with fiber M and structure

group DiffM , owing to the fact that we can take full advantage of the knowledge of

vector bundles instead of trying to understand a complete description of H∗(BDiff(M))

for an arbitrary smooth manifold M [RW16]. In particular, it is well known that

H∗(BSO(d);Q) is generated by the Pontryagin and Euler classes. In the case that

M has even dimension 2d, H∗(BSO(2d);Q) = Q[p1, p2, ..., pd−1, e], so, for example, we
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can form the kappa classes κp1(π), κp2(π), ..., κpd−1
(π), κe(π) or, as we will use later, the

classes κep1(π), κep2(π), ..., κepd−1
(π), and so on.

To define the tautological ring, we consider a basis B ⊂ H∗(BSO(d);Q). Note that

by using π we can define a ring homomorphism

γ(π) : Q[κc | c ∈ B]→ H∗(B;Q)

given by

κc 7→ κc(π).

We let IM be the ideal of Q[κc | c ∈ B] generated by the polynomials in the κc which

vanish under γ(π) for all smooth fiber bundles π with fiber M . The tautological ring

is the quotient ring

R∗(M) := Q[κc | c ∈ B]/IM .

The structure of IM , and thus R∗(M), depends on the structure of all fiber bundles

that can be formed with fiber M , and if κc ∈ IM then on any given fiber bundle it

either vanishes because c(Tπ) = 0 or because c(Tπ) 6= 0 and c(Tπ) ∈ kerπ!.

Let us consider R∗(M) in the case that M = g(Sd × Sd). Let π : E → B be some

smooth fiber bundle with fiber M . Since dim(M) = 2d, the characteristic classes of Tπ

are given by H∗(BSO(2d);Q) = Q[p1, p2, ..., pd−1, e], where the pi are the Pontryagin

classes and e is the Euler class. This gives us a natural basis B = {p1, ..., pd−1, e}, and

a ring homomorphism

γ(π) : Q[κp1 , κp2, ..., κpd−1
, κe]→ H∗(B;Q).

Of course, to define R∗(M) we need IM , which can be defined as the intersection

of ker(γ(π)), taken over all smooth fibre bundles π, and get R∗(M) by taking the

appropriate quotient ring. A different and useful way of thinking of R∗(M), as stated

in [RW16], is as the subring

R∗(g(Sd × Sd)) ⊂ H∗(BDiff+(M);Q)

generated by the κpi and κe.

Thus the trick to finding the tautological ring of a manifold is finding the polynomials

in elements of B which vanish under γ(π) for all smooth fiber bundles π. As we have

already mentioned, we will not be so ambitious as to give a full description of R∗(g(Sn×
Sn)), but instead will investigate the tautological ring modulo the nilradical, or the ideal
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of nilpotent elements, which is denoted
√

0. This makes the problem more tractable,

for instead of showing that a polynomial p is in the kernel of γ(π) for all smooth fiber

bundles π, we only need to show that γ(π)(p) is nilpotent for all π, which is a strictly

weaker condition. As the reader will see, nilpotence plays a fundamental role in most

of the proofs we will present.

2 Main Theorem

We will now introduce the main known result on the structure of R∗(g(Sd × Sd))/
√

0,

which is [GGRW17, Theorem1.1]. Our focus will be to explore the parts of the proof

which provide insight to the nature of the work yet to be done in this area. Because

of that, we will be unable to give a full proof of this theorem, but will instead focus

on one of the main, supporting results and the theory which supports it. We will write

Wi := i(Sd × Sd), using the convention that W0 = S2d.

Theorem 2.1 (Main result). Let d be odd. Then

1. R∗(W0)/
√

0 = Q[κep1 , κep2 , ..., κepd ]

2. R∗(W1)/
√

0 = Q,

3. R∗(Wg)/
√

0 = Q[κep1 , κep2 , ..., κepd−1
]

As stated in [GGRW17, §5.3], (i) holds before taking the quotient by the nilradical,

and also holds for both even and odd.

The most obvious restriction on the scope of this theorem is the requirement that

d be odd. It is on this detail that we will focus our attention. The need for this

hypothesis is complicated and nuanced, and it will take the bulk of this document to

give a full description. Theorem 2.1 relies on two results and follows very simple logic.

In the first result, we find generators for R∗(Wg)/
√

0, and in the second result we show

their algebraic independence. We include the two results, [GGRW17, Corollary 3.4]

and [GGRW17, Theorem 4.1], as follows:

Proposition 2.2 (Generators). Let d be odd.

(i) R∗(W0)/
√

0 is generated by κep1 , κep2 , ..., κepd,

(ii) R∗(W1)/
√

0 = Q,

(iii) R∗(Wg)/
√

0 is generated by κep1 , κep2 , ..., κepd−1
.
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Note that the statement of (ii) simply says that every kappa class is nilpotent, and

the only difference between R∗(Wg)/
√

0 and R∗(W0)/
√

0 is that κepd−1
is nilpotent in

R∗(Wg)/
√

0.

Proposition 2.3 (Algebraic independence). Let d be either odd or even, and ε = 1 if

d is odd. Then

(i) the map Q[κep1 , κep2 , ..., κepd ]→ R∗(W0)/
√

0 is injective,

(ii) the map Q[κep1 , κep2 , ..., κepd−ε ]→ R∗(Wg)/
√

0 is injective for g > 1.

The reader may have noticed that the hypotheses of Proposition 2.3 explicitly state

that d can be either odd or even. Since we have the injections from (i) and (ii), we

know that in the case that d is even R∗(Wg)/
√

0 is at least as big as the case that d

is odd—indeed when d is even, by (ii) we know that if g > 1, R∗(Wg)/
√

0 has strictly

more generators than it does when d is odd. The next step for the d-even case is thus

to either show that the injections in (i) and (ii) are also surjections (which is done for

the case that d is odd in Proposition 2.2), or show that these are insufficient and find

a strictly larger set of generators.

We might naively hope that the arguments used to prove Proposition 2.2 could

somehow be altered only slightly to do this. Unfortunately, this is not the case. As we

will see, the proof of Proposition 2.2 relies fundamentally on the parity of d.

3 Generators

This and the next two sections will be devoted to addressing the proof of Proposition

2.2, the result which gives the generators of R∗(Wg)/
√

0 for all g. As we did for the

main theorem in Section 2, we will first give a straightforward proof, relying on results

which we state from [GGRW17]. In Sections 4 and 5 we will prove the supporting

results.

Our first supporting result comes from [Gri13], and gives us a very useful relationship

between elements of even degree and the image of their cup product under π!. The result

is that if d is odd, a, b ∈ kerπ! have even degree and π : E → B is an oriented manifold

bundle with fiber Wg, then some power of π!(a ∪ b) is torsion. Note that with rational

coefficients, the π!(a ∪ b) is nilpotent, which means it is zero after the quotient by the

nilradical.

We emphasize here that π! is a group homomorphism on the underlying abelian

groups of H∗(E;Q) and H∗−2d(B;Q), but is not a ring homomorphism, as π!(a∪b) need
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not vanish. That π! is a group homomorphism with respect to the group operation of

addition (and that the map does not respect multiplication) is evident from its definition

by use of a fiber integral. This fact will also become clear in Section 4 from the more

algebraic definition. We include here Grigoriev’s result.

Theorem 3.1 (Theorem 2.7 in [Gri13]). Let d be an odd natural number. Let π : E → B

be an oriented manifold bundle with fiber Wg and let a, b ∈ H∗(E;Z) be two classes such

that π!(a) = 0, π!(b) = 0, and deg(a) is even.

Then the classes π!(a∪a) ∈ H2 deg(a)−2d(B;Z) and π!(a∪ b) ∈ Hdeg(a)+deg(b)−2d(B;Z)

satisfy the following two relations.

(2g + 1)! · π!(a ∪ a)g+1 = 0 (1)

(2g + 1)! · π!(a ∪ b)2g+1 = 0 (2)

Note the difference in exponents between Equations (1) and (2). We also note that

instead of requiring that the fiber be Wg, we only need the fiber to be (d−1)-connected

and have top cohomology isomorphic to Z (which Grigoriev calls a highly connected

manifold of dimension 2d). The reason for this will become obvious when we give the

proof of Theorem 3.1 in Section 4. The proof of Proposition 2.2 does not use Theorem

3.1 as is, but instead uses the following, stronger result which can be formally deduced

from Theorem 3.1.

Theorem 3.2 (Theorem 3.1 in [GGRW17]). Let π : E → B be a fibration with homo-

topy fiber homotopy equivalent to Wg = g(Sd × Sd), for d odd, such that the action of

π1(B, b) on H2d(π−1(b);Q) is trivial. For classes a, b ∈ H∗(E;Q) such that A = |π!(a)|
and B = |π!(b)| are even, if π!(a)k = 0 and π!(b)

l = 0, then π!(a ∪ b)(2g+1)(Ak+Bl) = 0.

We will not prove Theorem 3.2, except to say that in the proof we use Theorem 3.1

to conclude, after pulling back the classes a and b to classes a′ and b′ which are in the

kernel of π!, that π!(a
′∪ b′) is nilpotent. The curious reader can read the full proof from

[GGRW17, Theorem 3.1]. We move on to the second result which we use for the proof

of Proposition 2.2.

Proposition 3.3 (Proposition 3.3 in [GGRW17]). Let d be odd, I = (i1, ..., id) be a

sequence, pI = pi11 p
i2
2 · · · pidn be the associated monomial in the Pontrjagin classes, and

write |I| =
d∑
j=1

ij. Then:

(i) The class κpI is nilpotent in R∗(Wg).
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(ii) We have

χ|I| · κepI =
d∏
j=1

κijepj ∈ R
∗(Wg)/

√
0 (3)

(iii) If g ≥ 1 then for all k > 1 the classes κek is nilpotent in R∗(Wg).

We stop here to make the comment that the proof of this result relies on the fact

that the kappa classes induced by a specific type of characteristic classes are nilpotent

in R∗(Wg). These are called the modified Hirzebruch L-classes and denoted L̃i ∈
H4i(BSO(2d);Q). One of the results upon which the proof of Proposition 3.3 relies is

the following.

Theorem 3.4 (Theorem 2.1 in [GGRW17]). Let M be a manifold of dimension 2d. The

classes κL̃i ∈ R
∗(M) are nilpotent for all natural numbers i ≥ 1 such that 4i− 2d 6= 0.

Under the hypothesis that d is odd, Theorem 3.4 gives us that all the kappa classes

of the form κL̃i are nilpotent in R∗(M). However, if d is even, we do not have this

result for i = d/2. In Section 6 we will explore the nature of the relationship that this

theorem has to the overall theory, and what obstructions it contributes to extending to

the d-even case.

Finally, we give the proof of Proposition 2.2.

Proof of Proposition 2.2. Proposition 3.3 (i) and (ii) give immediately that for any g,

the ring R∗(Wg)/
√

0 is generated by the elements κep1 , κep2 , ..., κepd .

In the case that g = 1, we have that κe = 0 (see [GGRW17, Corollary 3.4]). It

follows from Theorem 3.2 and Proposition 3.3 (i) that each of the κepi are nilpotent,

and so R∗(W1)/
√

0 = Q.

In the case that g > 1, Proposition 3.3 (iii) implies that κepd=κe3
is nilpotent. So

R∗(Wg)/
√

0 is generated by the elements κep1 , κep2 , ..., κepd−1
.

4 Theorem 3.1 and the d−odd hypothesis

Our goal for the next two sections will be to investigate the precise reasons for which

we need the hypothesis that d be odd in Proposition 2.2. Later, in Sections 6 and 7,

we will explore the possibility of extending to the case that d is even.

We point out that both of the supporting results in the proof of Proposition 2.2 use

the hypothesis that d is odd. Thus in order to understand fully the need for the d-odd

hypothesis, we will need to investigate the proof of both supporting results to find the
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precise reasons for which the hypothesis is used. We will begin with Theorem 3.2 in

this section, and then in Section 5 we will investigate Proposition 3.3.

The authors note in [GGRW17, p.2], “We cannot obtain results as conclusive as

Theorem 2.1 for d even, as our argument relies on [Gri13] which does not apply in

this case.” What is referred to here comes out in this paper in Section 3, where we

used Theorem 3.1, given in [Gri13], in order to prove Theorem 3.2. Thus showing why

Theorem 3.2 depends on the d-odd hypothesis comes down to showing why Theorem

3.1 depends on it. We will thoroughly give the proof of Theorem 3.1, emphasizing the

points at which we use the hypothesis and pointing out why it is not possible to use the

same arguments for the case that d is even. The proof we give will follow the arguments

given in [Gri13].

This section will draw heavily on the material from Appendices D and E. In par-

ticular, we will:

• use the system of local coefficients denoted by Hi and corresponding to the co-

homology groups H i(M ;Z), where M is the homotopy fiber of our bundle over a

basepoint, as defined in Example D.3;

• use the orientation isomorphism from Example D.3, as well as the other maps

defined in the example and their properties;

• assume a working knowledge of the convergence theorem of the Serre spectral

sequence for local coefficients (see Theorem E.9), as well as the notation from

Appendix E.1;

• use the product structure of the Serre spectral sequence with local coefficients, as

given in Appendix E.1.

We invite the reader to read briefly through these sections and examples in order to

become familiar with the notation and conventions used in what follows.

4.1 The pushforward map

In this section we will fully address the definition of the pushforward map, using the

algebraic tools that we have built up thus far. Using the Serre spectral sequence, we

will define a series of maps whose composition is the pushforward map. It is by under-

standing these maps that we will understand the subtle need for the d-odd hypothesis.

We will first map Hn(E;Z) into the E∞ page of the spectral sequence on the 2d-

row. Then, as we will show, we can inject En−2d,2d
∞ into En−2d,2d

2 . Finally, because
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H2d(Wg) ∼= Z, we have an isomorphism En−2d,2d
2

∼−→ Hn−2d(B;Z). The composition

of these three maps gives us our desired π! : H∗(E;Z) → H∗−2d(B;Z). The only

hypothesis we have is that our bundle be oriented.

Lemma 4.1 ([Gri13, Lemma 3.3]). The filtration on cohomology is such that, for all

d, the following two equalities hold:

F n−2dHn(E;Z) = Hn(E;Z) (4)

F n−dHn(E;Z) = F n−2d+1Hn(E;Z). (5)

Proof. It suffices to show that En−q,q
2 = 0 for q > 2d and for 2d > q > d, which comes

immediately because our fiber Wg only has nonzero cohomology in degrees 0, d and

2d, giving that both the E2 and E∞ pages only have nonzero entries on rows 0, d and

2d.

This gives us our first map, because by the convergence theorem of the Serre spectral

sequence, Lemma 4.1 gives us the following map:

Hn(E;Z) = F n−2dHn(E;Z)
p
� F n−2dHn(E;Z)/F n−2d+1Hn(E;Z) = En−2d,2d

∞ (6)

which allows us to map Hn(E;Z) into En−2d,2d
∞ , as desired.

Lemma 4.2 ([Gri13, Lemma 3.4]). En−2d,2d
∞ ⊂ En−2d,2d

2 .

Proof. Recall that our fiber Wg only has nonzero cohomology in degrees 0, d and 2d,

giving that both the E2 and E∞ pages only have nonzero entries on rows 0, d and

2d. Note also that from the E2 page and onwards, all the differentials in the spectral

sequence go in the down-right direction. Since our groups in question are on row 2d, in

the decomposition given by Theorem E.9 as En−2d,2d
∞ = Zn−2d,2d/Bn−2d,2d for subgroups

Bn−2d,2d and Zn−2d,2d of En−2d,2d
2 , of necessity Bn−2d,2d = 0, so En−2d,2d

∞ = Zn−2d,2d ⊂
En−2d,2d

2 , as desired.

Lemma 4.1 gives us the obvious inclusion map, as desired. Note that this result

depends on the groups En−2d,2d
∞ and En−2d,2d

2 being on row 2d, or having only trivial

groups in rows above them, which is why π! decreases in degree by the dimension of

the fiber.

Finally, we remind the reader of the orientation isomorphism H2d(M)
∼−→ Z given

before. This induces an isomorphism En−2d,2d
2 = Hn−2d(B;H2d(M))

∼−→ Hn−2d(B;Z),

which is the final map in our composition. The definition of π! follows.
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E∞

En−2d,d
∞

d

2d

E2

En−2d,d
2

d

2d

Hn(E;Z)

Hn−2d(B;Z)

i

p

orcoeff

Figure 1: The pushforward map through the E∞ and E2 pages of the Serre spectral
sequence. The horizontal bars on the pages represent the 2d, d and 0 rows—the only
rows which have nontrivial groups. The diagonal lines are there to show the groups
whose indexes sum to d.

Definition 4.3. The pushforward map on cohomology, π! : H∗(E;Z) → H∗−2d(B;Z),

is the map that makes the following diagram commute:

Hn(E;Z) = F n−2dHn(E;Z) Hn−2d(B;Z)

En−2d,2d
∞ En−2d,2d

2

p

π!

i
∼ orcoeff

where i is the inclusion map given by Lemma 4.2, p is the map from Equation 6, and

orcoeff is the orientation isomorphism described at the start of this section.

We have included Figure 1 to illustrate the pushforward map as it goes through the

Serre spectral sequence. As we alluded to before, that our definition given is equivalent

to the definition given in the beginning using a fiber integral is a result in [Boa70].

We make the statement here that the pushforward is natural with respect to pull-

backs, meaning that it takes characteristic classes to characteristic classes. This is

vital if we are going to find any useful information about the characteristic classes in

H∗(B;Z) via those in H∗(E;Z).

4.2 Proof of Theorem 3.1

We are now prepared to give a proof of Theorem 3.1, which we restate here for the

convenience of the reader. As we have mentioned before, the results from [Gri13]

are true when the fiber in question is (d − 1)-connected and has the top cohomology

isomorphic to Z—i.e. when the fiber’s cohomology groups behave similarly to those
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of Wg. Because of the scope of this paper we will focus on the case that our fiber is

Wg. We invite the interested reader to either make the minor adjustments necessary to

prove these results in full generality or to consult [Gri13].

Theorem 3.1 (Theorem 2.7 in [Gri13]). Let d be an odd natural number. Let π : E → B

be an oriented manifold bundle with fiber Wg and let a, b ∈ H∗(E;Z) be two classes such

that π!(a) = 0, π!(b) = 0, and deg(a) is even.

Then the classes π!(a∪a) ∈ H2 deg(a)−2d(B;Z) and π!(a∪ b) ∈ Hdeg(a)+deg(b)−2d(B;Z)

satisfy the following two relations.

(2g + 1)! · π!(a ∪ a)g+1 = 0 (7)

(2g + 1)! · π!(a ∪ b)2g+1 = 0 (8)

The proof we give relies on the following two main results, which we will prove in

the following sections, Sections 4.3 and 4.4. In what follows, M refers to the homotopy

fiber of our bundle in question.

Proposition 4.4 ([Gri13, Proposition 3.8]). Let H = Hd(M). Let a ∈ Hdeg(a)(E)

and b ∈ Hdeg(b)(E) be two classes such that π!(a) = 0 and π!(b) = 0. Then there are

ι ∈ Hdeg(a)−d(B;H) and κ ∈ Hdeg(b)−d(B;H) that depend only on a and b, respectively,

such that π!(a ∪ b) is the image of ι⊗ κ under the composition of maps

Hdeg(a)−d(B;H)⊗Hdeg(b)−d(B;H) H i(B;H⊗H) Hp+p′(B;Z)

ι⊗ κ π!(a ∪ b)

∪ ωcoeff

(9)

where i = deg(a) + deg(b)− 2d and ωcoeff is the map induced by

ω : H⊗H ∪−→ H2d(M)
or−→ Z.

Proposition 4.5 ([Gri13, Proposition 4.1]). Let H be a twisted coefficient system with

fiber Zk with k ≤ 2g. Let ι ∈ H∗(B;H) have odd degree. Then

(2g + 1)! · ι2g+1 = 0 ∈ H(2g+1) deg(ι)(B;H⊗2g+1).

Together, these results give a generalization of the fact that if a = ι ∪ κ is an

integral cohomology class and at least one of ι and κ has odd degree, then 2a2 = 0.
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Proposition 4.4 first shows that if a, b ∈ H∗(E;Z) satisfy the hypotheses of Theorem

3.1, then π!(a ∪ b) can be decomposed as the product of two classes in E2 page of the

Serre spectral sequence. Note that if deg(a) is even and d is odd, then our proposition

gives us that deg(ι) is odd.

Proposition 4.5 shows that, in a similar fashion to the case of integral cohomology,

if π!(a ∪ b) is the product of two classes on the E2 page, and if at least one of them

has odd degree, then there exists some k such that k · π!(a ∪ b)k = 0. If we consider

everything with rational coefficients, as is the case with our main theorem, the result

can be strengthened to say that π!(a ∪ b) is nilpotent, and thus zero after we quotient

by the nilradical.

We need one final, minor proposition, after which the proof of Theorem 3.1 is quite

straightforward.

Proposition 4.6 (Proposition 4.7 in [Gri13]). The following diagram commutes.

(Hdeg(a)−d(B;H)⊗Hdeg(b)−d(B;H))⊗l H(deg(a)−d)·l(B;H⊗l)⊗H(deg(b)−d)·l(B;H⊗l)

H i(B;H⊗H)⊗l H il(B; (H⊗H)⊗l)

H i(B;Z)⊗l H il(B;Z⊗l ∼= Z)

∪

ϕ

∪ ∪ permute coefficients

∪

(ωcoeff)⊗l (ω⊗l)coeff

∪

where ϕ is the map that first permutes the coordinates of (ι⊗κ)⊗· · ·⊗ (ι⊗κ) and then

takes the cup product, as follows:

(ι⊗ κ)⊗ · · · ⊗ (ι⊗ κ) 7→ (ι⊗ · · · ⊗ ι)⊗ (κ⊗ · · · ⊗ κ) 7→ (ι ∪ · · · ∪ ι)⊗ (κ ∪ · · · ∪ κ).

The upper-right, vertical arrow also permutes the coefficients.

The proof of Proposition 4.6 is a straightforward application of the associativity of

the cup product and the fact that the cup product commutes with change of coefficients.

To make this more clear, we have a diagram of the images of (ι⊗κ)⊗l under these maps:

(ι⊗ κ)⊗ · · · ⊗ (ι⊗ κ) ±(ι ∪ · · · ∪ ι)⊗ (κ ∪ · · · ∪ κ)

(ι ∪ κ)⊗ · · · ⊗ (ι ∪ κ) ι ∪ κ ∪ · · · ∪ ι ∪ κ

π!(a ∪ b)⊗l π!(a ∪ b)l

∪ ∪ ∪ permute coeff.

∪

(ωcoeff)⊗l (ω⊗l)coeff

∪
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The only ambiguity in the diagram is the upper right-hand corner, where the

image of (ι ⊗ κ)⊗l is defined up to a sign, which is (−1) raised to the power of∑l−1
i=1(deg(κ) deg(ι))i by graded commutativity of the cup product.

For our purposes, Proposition 4.6 means that π!(a∪b)2g+1 is the image of ι2g+1∪κ2g+1

under some group homomorphism—specifically, the homomorphism given by the right-

hand side of the diagram above. With these results, we proceed with the proof of

Theorem 3.1.

Proof of Theorem 3.1. Let a, b ∈ H∗(E;Z) be two classes such that π!(a) = 0, π!(b) = 0

and deg(a) is even. By Proposition 4.4 we have the decomposition of π!(a ∪ b) as the

product of classes ι ∈ Hdeg(a)−d(B;H) and κ ∈ Hdeg(b)−d(B;H). Proposition 4.6 gives

us that π!(a ∪ b)2g+1 is the image of ι2g+1 ∪ κ2g+1 under a group homomorphism (given

by the right-hand side of the diagram in Proposition 4.6) which we call ϕ.

Then ι has odd cohomological degree because deg(a) is even and d is odd. Recall

that Hd(Wg;Z) = Z2g, so rankH = 2g, and by Proposition 4.5, (2g + 1) · ι2g+1 = 0.

Thus we have

(2g + 1) · π!(a ∪ b)2g+1 = ϕ((2g + 1) · ι2g+1 ∪ κ2g+1) = ϕ(0) = 0.

Likewise, π!(a∪a)g+1 is the image of ιg+1∪ιg+1 = ι2g+1∪ι under a group homomorphism.

Since (2g + 1) · ι2g+1 = 0, we have again that (2g + 1) · π!(a ∪ a)g+1 = 0 as desired.

Through the proofs in the following two sections we will gain our first insight into

the necessity of the d-odd hypothesis. With that said, we will move straight into the

proof of Proposition 4.4.

4.3 Proof of Proposition 4.4

The proof of Proposition 4.4 is quite straightforward. We first define a map called the

secondary pushforward, which maps from the kernel of π!. Then the proof of Proposition

4.4 becomes a matter of showing that a diagram commutes. In order to define the

secondary pushforward, we only need one small result about ker π!.

Lemma 4.7 (Lemma 3.6 in [Gri13]). Let (kerπ!)
n := (ker π!) ∩Hn(E;Z) ⊂ H∗(E;Z).

If M is highly connected (i.e. is 2d-dimensional and (d− 1)-connected), then

(kerπ!)
n = F n−dHn(E;Z) (10)
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Proof. Consider the pushforward map given in Definition 4.3, and note that it is the

composition of a surjection with two injections. Thus (ker π!)
n is the kernel of the

quotient map

Hn(E;Z) = F n−2dHn(E;Z)� F n−2dHn(E;Z)/F n−2d+1Hn(E;Z) = En−2d,2d
∞

and (ker π!)
n = F n−2d+1Hn(E;Z). The statement of Lemma 4.1 is F n−2d+1Hn(E;Z) =

F n−dHn(E;Z).

Now since (kerπ!)
n = F n−dHn(E;Z), we have a map (ker π!)

n � En−d,d
∞ which is

precisely the quotient map

F n−dHn(E;Z)� F n−dHn(E;Z)/F n−d+1Hn(E;Z)

from our spectral sequence. Unfortunately, since we are not working on row 2d of the

infinity page, we cannot guarantee an injection En−d,d
∞ ↪−→ En−d,d

2 . However, by the con-

vergence theorem of the Serre spectral sequence we know that En−d,d
∞ = Zn−d,d/Bn−d,d,

where both Bn−d,d and Zn−d,d are subgroups of En−d,d
2 . Thus we have an inclusion

En−d,d
∞ ↪−→ En−d,d

2

Bn−d,d .

We choose a function of sets ξ : (ker π!)
n 99K En−d,d

2 to be a map (choose one) that

makes the following diagram commute:

(kerπ!)
n F n−dHn(E;Z) En−d,d

∞
En−d,d2

Bn−d,d

En−d,d
2 = Hn−d(B;Hd)

ξ (11)

Note that this is always possible because the vertical arrow in (11) surjects. We use a

dashed line for this map to remind the reader that ξ is not a group homomorphism, but

a correspondence of sets. We will assume from here on that the choice for ξ is fixed.

We will call ξ the secondary pushforward as it behaves similarly to the pushforward

map, mapping through row d of the Serre spectral sequence instead of row 2d.
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E∞

E2

Hn+m(E;Z)

a ∪ b∈

Hn+m−2d(B;Z)

π!(a ∪ b)

∈

ker(π!)
n

a

∈

ker(π!)
m

b

∈

ξ

∪

•

i

p

orcoeff
∼

Figure 2: We’ve added a few arrows onto Figure 1 to give a visual image of both π
and ξ in the context of Proposition 4.8. That the proposition is true is illustrated by
the fact that this diagram commutes. The maps along the top, going from Hn(E;Z) to
Hn−2d(B;Z), compose to be π! as in Figure 1 from Section 4.1. The labels are given in
very small letters. The map along the bottom of the diagram is precisely the secondary
pushforward, ξ, as given in (11). Finally, the vertical arrows are, respectively, the cup
product of cohomology on the left and the product on the E2 page on the right.

Proposition 4.8 (Proposition 3.8 in [Gri13]). Let a ∈ (kerπ!)
p+d and b ∈ (kerπ!)

p′+d.

Then π!(a ∪ b) ∈ Hp+p′(B;Z) is the image of ξ(a)⊗ ξ(b) under the following map:

Ep,d
2 ⊗ E

p′,d
2 Ep+p′,2d

2 Hp+p′(B;Z)

ξ(a)⊗ ξ(b) π!(a ∪ b)

•

or
coeff

∼=

(12)

Proof. Consider the following diagram:

(kerπ!)
p+d ⊗ (kerπ!)

p′+d Hp+p′+2d(E;Z)

F pHp+d(E;Z)⊗ F p′Hp′+d(E;Z) F p+p′Hp+p′+2d(E;Z)

Ep,d
∞ ⊗ Ep′,d

∞ Ep+p′,2d
∞

Ep,d2

Bp,d
⊗ Ep,p

′
2

Bp′,d
Ep+p

′,2d
2

Bp+p′,2d
= Ep+p′,2d

2

Ep,d
2 ⊗ E

p′,d
2 Hp+p′(B;Z)

∪

E∞mult.

E2mult.

(b)

•
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In this diagram, the left column is the composition of maps which we used to define

the secondary pushforward ξ, and the right column is the composition of maps used

to define π!. By the convergence theorem of the Serre spectral sequence, the map (b)

is well-defined, and the diagram commutes. The equality in the codomain of (b) and

Ep+p′,2d
2 comes from Lemma 4.2, which established that En−2d,2d

∞ ⊂ En−2d,2d
2 . The red

triangle from our diagram (included again below) commutes,

Ep,d2

Bp,d
⊗ Ep,p

′
2

Bp′,d
Ep+p

′,2d
2

Bp+p′,2d
= Ep+p′,2d

2

Ep,d
2 ⊗ E

p′,d
2

E2mult.

(b)

•

which gives us that the map Ep,d
2 ⊗ E

p′,d
2 → Hp,p′(B;Z) from our diagram is precisely

the map given in (12), and we have our result.

Proposition 4.8 is simply a restatement of Proposition 4.4, as the composition of

maps in (12), written explicitly in cohomology groups instead of with the E2 page of

the spectral sequence, is simply the composition

Hp(B;H)⊗Hp′(B;H)
∪→ Hp+p′(B;H⊗H)

∪coeff→ Hp+p′(B;H2d(M))
orcoeff→ Hp+p′(B;Z),

which is precisely the definition we gave for (9) from Proposition 4.4. In this restate-

ment, ι = ξ(a) and κ = ξ(b).

Remark: We wish to pause and note a few insights we can gain from this proof before

moving on to the proof of Proposition 4.5. First, the proofs of Proposition 4.4 and all

of its supporting lemmas do not rely at all on the degree of a or b. Indeed, the degree

of ξ(a) is the difference of deg(a) and d. Thinking back to the main theorem which

we are looking to prove, we recall that H∗(BSO(2d);Q) is a Q-algebra generated by

the Pontryagin and Euler classes. Since each of these has exclusively even degree, the

only case in which Proposition 4.4 becomes relevant is when deg(a) and deg(b) are both

even. As we will see in the next section, this will force d to be odd.

4.4 Proof of Proposition 4.5

We will now move on to prove Proposition 4.5 which, together with the proof of Propo-

sition 4.4, will give us valuable insights into our main goal of discovering the necessity
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of the d-odd hypothesis. We will explicitly use the structure of the twisted coefficient

system that we have been using in the Serre spectral sequence.

Before giving a proof of the proposition, we need to prove two lemmas. To do

this, we remind the reader that the cup product with twisted coefficients is graded

commutative in the sense that if H and H′ are twisted coefficient systems and

τ : H⊗H′ → H′ ⊗H

is the map a⊗ b 7→ b⊗ a, then for α ∈ Hp(B;H⊗H′) and β ∈ Hq(B;H′⊗H), we have

that

α ∪ β = (−1)pqτcoeff(β ∪ α)

(see Example D.3 of Appendix D). This graded commutativity will play essentially the

same role in our proof that ιk is torsion that the role that graded commutativity plays

in the result that β2 is torsion if β is an integral cohomology class of odd degree.

The proof of Proposition 4.5 will rely on one more notion. Note that for a twisted

coefficient system H and t ∈ N, H⊗t is a representation of the symmetric group St,

where the action is given by

σ · (h1 ⊗ · · · ⊗ ht) = (hσ(1) ⊗ · · · ⊗ hσ(t)).

By the same action, H∗(B;H⊗t) is also an St-representation. Furthermore, for any St-

representation V we can define the alternating sub-representation, AltV , which consists

of vectors v ∈ V with the property that for all σ ∈ St,

σ · v = sgn(σ)v.

For example, we can consider AltH∗(B;H⊗t).

Lemma 4.9 (Lemma 4.2 in [Gri13]). If ι ∈ Hdeg(ι)(B;H) with deg(ι) odd, then ιt ∈
AltH∗(B;H⊗t).

Proof. Consider the action of a transposition τ on ιt, and note that by graded commuta-

tivity of the cup product with twisted coefficients, τcoeff(ι∪ ι) = (−1)deg(ι)2
ι∪ ι = −ι∪ ι,

and thus

τcoeff(ιt) = −ιt ∈ H t·deg(ι)(B;H⊗t). (13)

Any permutation σ ∈ St can be decomposed as a product of transpositions, the number

of which is unique modulo 2. If there are k transpositions in a decomposition of σ, then
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sgn(σ) = (−1)k. Thus by (13),

σcoeff(ιt) = (−1)kιt = sgn(σ)ιt ∈ H t·deg(ι)(B;H⊗t)

as desired.

We note here that, just as in the analogous case of integral cohomology, (13) does not

hold if deg(ι) is not odd. We now prove another lemma, which relates AltH∗(B;H⊗t)
and H∗(B; AltH⊗t). After this, the proof of Proposition 4.5 is very straightforward.

Lemma 4.10 (Lemma 4.3 in [Gri13]). Suppose that α ∈ AltHdegα(B;H⊗t). Then t! ·α
is contained in the image of the map icoeff : H∗(B; AltH⊗t)→ H∗(B;H⊗t).

Proof. Consider first the map on coefficient systems p : H⊗t → AltH⊗t given by

v
p7→
∑
σ∈St

sgn(σ)(σ · v).

To show that the image of p is genuinely contained in AltH⊗t, it suffices to show that

if τ is a transposition, then

τ

(∑
σ∈St

sgn(σ)(σ · v)

)
= sgn(τ)

(∑
σ∈St

sgn(σ)(σ · v)

)
.

Note that sgn(τσ) = sgn(τ)sgn(σ) = −sgn(σ) and thus that sgn(σ)(τ ·σ)v = −sgn(τ ·
σ)(τ · σ)v = sgn(τ)sgn(τ · σ)(τ · σ)v. Thus in the sum,

τ

(∑
σ∈St

sgn(σ)(σ · v)

)
=

(∑
σ∈St

sgn(σ)(τ · σ)v

)
= sgn(τ)

(∑
σ∈St

sgn(τ · σ)(τ · σ)v

)
,

as desired.

Now consider α ∈ AltHdeg(α)(B;H⊗t) ⊂ Hdeg(α)(B;H⊗t). By definition, σcoeff · α =

sgn(σ)α, and thus

pcoeff(α) =
∑
σ∈St

sgn(σ)(σcoeff · α) =
∑
σ∈St

sgn(σ)2(α) = t! · α.

Thus t! · α = (i ◦ p)coeff(α), and we have our desired result.
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Proof of Proposition 4.5. Let ι ∈ H∗(B;H) have odd degree and suppose that the

twisted coefficient system H has as fiber a free abelian group of rank < 2g. Then we

have AltH⊗2g+1 = 0. By Lemmas 4.9 and 4.10, we have that t! · ιt is in the image of

H∗(B; AltH⊗t) under icoeff. So, in particular, (2g + 1)! · ι2g+1 = 0, as desired.

4.5 Extending Theorem 3.1 to the case that d is even

It is evident from the proof of Lemma 4.9 that Proposition 4.5 relies explicitly on the

fact that deg(ι) is odd. As we noted above, (13) doesn’t hold if deg(ι) is even. Going

back to Proposition 4.4, if we consider a ∈ Hdeg(a)(E) and b ∈ Hdeg(b)(E) such that

π!(a) = 0 and π!(b) = 0, then in order to guarantee that (2g + 1) · ι2g+1 = 0 we need

either deg(a) − d or deg(b) − d to be odd. We don’t care about the case that deg(a)

or deg(b) is odd, because generalized Mumford-Miller-Morita classes have even degree,

as they are generated by the κpi and κe. Thus, d is forced to be odd, and we have our

main underlying reason for the necessity of the d-odd hypothesis.

We might take this a little further and try to consider a way in which these arguments

could be generalized to include the case that d is even. This, however, is unlikely. As

we have stated before, these arguments are a generalization of the fact that if β is a

cohomology class with odd degree, then 2β2 = 0. It might be true that we can find

special properties of the manifold Wg which give us a result analogous to Theorem 3.1

for the case that d is even, but it would not come from the implicit structure of the Serre

spectral sequence. Indeed, there is no known explicit structure of the multiplication

on the Serre spectral sequence that would allow us to make similar arguments for the

d-even case.

It may also be true that there exist a class of manifolds other than the Wg for which

the structure of the Serre spectral sequence would lend itself to a result such as Theorem

3.1, regardless of the dimension of the manifold. The issue for us is that, because Wg is

(d− 1)-connected and thus only has cohomology in degree 0, 2d and d, the only way to

decompose the image of π!(a ∪ b) via the multiplication on the Serre spectral sequence

and the images of a and b under some other map is through the d-row. Proposition 4.5

makes it so that d is forced to be odd.

Perhaps, given different patterns in cohomology, and thus different nontrivial rows

in the cohomology, it would be possible to find maps ξ′ such that, under the hypotheses

of Theorem 3.1, give us that π!(a∪b) is the image of ξ′(a)⊗ξ′(b) under the multiplication

map, composed with the orientation map, as we did before.

For example, consider manifold of the form M2d+1 := Sd × Sd+1. From Example
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E.7 in Appendix E we know that Hk(N ;Z) = Z if k = 0, d, d + 1 or 2d + 1 and 0

otherwise. In this case, if we could prove the existence of a secondary pushforward ξ

such that Proposition 4.4 holds then we Proposition 4.5 would always hold regardless

of the parity of d because d and d+ 1 are of opposite parity. This, however, is of no use

because κ classes are even-dimensional. It seems that, for bundles whose fiber is the

product of spheres, the implicit structure of the Serre spectral sequence will yield no

fruit for a result such as Theorem 3.1 for the case that d is even. We will likely have to

use arguments distinct from those given by [Gri13] in order to prove a result analogous

to our main theorem, Theorem 2.1, for the case that d is even.

5 Proposition 3.3 revisited

Section 4 was devoted to proving the first (and most significant) result which we used

in the proof of Proposition 2.2—which is itself a pillar in the proof of the main theorem,

Theorem 2.1. We did this for the purpose of explaining the precise reasons for which

Theorem 2.1 requires the d-odd hypothesis. This section will be devoted to doing the

same for the other supporting result in the proof of Proposition 2.2, Proposition 3.3.

We repeat Proposition 3.3 below for the reader’s convenience.

Proposition 3.3 (Proposition 3.3 in [GGRW17]). Let d be odd, I = (i1, ..., id) be a

sequence, pI = pi11 p
i2
2 · · · p

id
d be the associated monomial in the Pontrjagin classes, and

write |I| =
d∑
j=1

ij. Then:

(i) The class κpI is nilpotent in R∗(Wg).

(ii) We have

χ|I| · κepI =
d∏
j=1

κijepj ∈ R
∗(Wg)/

√
0 (14)

(iii) If g ≥ 1 then for all k > 1 the classes κek is nilpotent in R∗(Wg).

As the reader might recall, this proposition was used in the proof of Proposition

2.2, which gives the generators of R∗(Wg). We made the comment in Section 3 that

the proof of this result relies on the fact that the kappa classes induced by a specific

type of characteristic classes are nilpotent in R∗(Wg). These are called the modified

Hirzebruch L-classes and denoted L̃i ∈ H4i(BSO(2d);Q).

In this section we will give an exposition of Proposition 3.3, introducing fully the

Hirzebruch L-classes. We will show that the proof of Proposition 3.3 relies on two
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results. The first of these is Theorem 3.2, as we might expect. Since Theorem 3.2 is

proved from Theorem 3.1, this further emphasizes the critical role that Theorem 3.1

and the truth of the statement we quoted earlier in [GGRW17] which said that “we

cannot obtain results as conclusive as Theorem 2.1 for d even, as our argument relies

on [Gri13].” The second result upon which Proposition 3.3 relies we gave earlier, and

we repeat it here.

Theorem 3.4 (Theorem 2.1 in [GGRW17]). Let M be a manifold of dimension 2d.

Then the classes κL̃i ∈ R∗(M) are nilpotent for all natural numbers i ≥ 1 such that

4i− 2d 6= 0.

Before making any comments on the implications that changing the d-odd hypothesis

to d-even on these results, let us first give a definition for the modified Hirzebruch L-

classes and give a proof for Proposition 3.3. It is only after we do this that we will be

capable of discussing the barriers which prevent us from expanding these results to the

case that d is even.

The modified Hirzebursch L-classes L̃i ∈ H4i(BSO(2d);Q) are a set of characteristic

classes which generate the same subring of H∗(BSO(2d);Q) as the Potryagin classes

p1, p2, ..., pd. In our case, they turn out to be a convenient generating set with which to

work.

Consider the graded ring Q[x1, ..., xd] in which all the xi has degree 2. We define

homogeneous symmetric polynomials L̃i by the expression

L̃ = 2d + L̃1 + L̃2 + · · · =
d∏
i=1

xi
tanhxi/2

.

Note that, since xi
tanhxi/2

is an even function, L̃i is a symmetric polynomial in x2
1, x

2
2, ..., x

2
d.

Since the subring of symmetric polynomials is generated by the elementary symmetric

polynomials σi,d := σi,d(x
2
1, ..., x

2
d) given by

σi,d =
∑

1≤l1<···<li≤d

x2
l1
· · ·x2

li
,

where σ0,d = 1, the L̃i can be expressed as a polynomial L̃i(σ1,d, ..., σd,d). Thus we

define the modified Hirzebruch L-classes to be the following polynomials evaluated at

the Pontraygin classes:

L̃i := L̃i(p1, p2, ..., pd) ∈ H4i(BSO(2d);Q).
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For the reader familiar with the usual Hirzebursch L-classes, L, we note that the

modified differ from the usual by L̃i = 2d−2iLi. As we mentioned before, it is a standard

result that the L̃i generate the same subring of H∗(BSO(2d);Q) as the pi [GGRW17,

§2.1].

Parts (i) and (ii) of Proposition 3.3 follow in a relatively straightforward manner

from Theorems 3.2 and 3.4.

Proof of Proposition 3.3 (i) and (ii). Theorem 3.4 gives us right away that the classes

κL̃i are nilpotent for all i. Thus by Theorem 3.2, for any d-tuple J = (j1, ..., jd) and

monomial L̃J = L̃j11 L̃
j2
2 · · · L̃

jd
d , the class κL̃J is nilpotent. Since the L̃i generate the same

subring of H∗(BSO(2d);Q) as the pi, any monomial pI may be written as a polynomial

in the L̃i and we have that each κpI is nilpotent, as desired, and we have (i).

For (ii), let π : E → B be a fiber bundle with fiber Wg. For a monomial pJ in the

Pontryagin classes, define

(pJ)′ := χepJ − eπ∗(κepJ ).

Then

κ(pJ )′pi = π!(χepipJ − epiπ∗(κepJ )) = χκepipJ − κepiκepJ

because π! is a group homomorphism with respect to addition addition and by the

push-pull formula:

π!(a ∪ π∗(b)) = π!(a) ∪ b

(see e.g. [Gri13, Proposition 5.1]). Futhermore, κ(pJ )′ = 0 because π!(e) = χ. That

π!(e) = χ is a well-known fact which follows from the push-pull formula (see e.g [Gri13,

Lemma 5.2]).

Then part (i) gives us that κpi is nilpotent, so by applying Theorem 3.2 we conclude

that κ(pJ )′pi is nilpotent. Thus modulo nilpotents, χκepipJ = κepiκepJ . Since π : E → B

was an arbitrary (smooth) fiber bundle with fiber Wg, this identity holds in the ring

R∗(Wg). We get (ii) by induction.

We still owe the reader the proof for part (iii). In order to give it, we need to

introduce a tautological ring closely related to R∗(M). This is defined by considering

objects of the form (π, s), where π : Ek+2d → Bk is a fiber bundle with fiber M2d and

s : B → E is a section. To fiber bundles with a section we can associate additional

characteristic classes c(π, s) := s∗(c(Tπ)) for c in a basis B of H∗(BSO(2d);Q). This
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gives us a ring homomorphism

Q[c, κc | c ∈ B]→ H∗(B;Q)

which is given by c 7→ c(π, s) and κc 7→ κc(π). In a manner analogous to the definition of

R∗(M) we let I(M,?) ⊂ Q[c, κc | c ∈ B] be the ideal of polynomials in the c and κc which

vanish on all smooth fiber bundles equipped with a section. Our desired tautological

ring is the quotient ring

R∗(M, ?) := Q[c, κc | c ∈ B]/I(M,?).

We only need one more result, taken from [GGRW17], in order to give a proof of (iii).

This gives us a convenient connection between R∗(Wg, ?) and R∗(Wg).

Lemma 5.1 (Lemma 3.2 in [GGRW17]). Let d be odd.

(i) For any c ∈ B, we have

χ2c− χκec − χeκc + κe2κc = 0 ∈ R∗(Wg, ?)/
√

0 (15)

(ii) We have

(χ− 2)χe+ κe2 = 0 ∈ R∗(Wg, ?)/
√

0 (16)

(iii) If g 6= 1 then the map

R∗(Wg)→ R∗(Wg, ?)

is injective.

The map in part (iii) of Lemma 5.1 refers to the natural inclusion map of the κc

classes of R∗(Wg) into R∗(Wg, ?). This map will allow us to deduce that certain elements

of R∗(Wg) are nilpotent because their images under the injection are nilpotent. We are

now ready to give a proof for part (iii) of Proposition 3.3.

Proof of Proposition 3.3 part (iii). First consider the case that g = 1, so that κe = 0.

Then since

κe2l = κpld and κe2l+1 = κepld ,

we have from part (i) of this proposition that κpld , and thus κe2l , is nilpotent. Since

κe = 0, by Theorem 3.2 we have that κepld , and thus κe2l+1 , is nilpotent as desired.
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Now let g > 1. In this case, κe is not nilpotent. However, we can write

κe2l = κpld and κe2l+1 = κe3pl−1
d

and thereby see that the same result holds if we can show that κe3 is nilpotent.

It is now that we will use Lemma 5.1 from above. Recall the standard result that

pd = e2 because, regardless of the parity of d, we are working with even-dimensional

vector bundles—i.e., we are working with characteristic classes in H∗(BSO(2d);Q).

Then using (i) of said lemma with c = pd = e2,

χ2pd − χκepd − χeκpd + κe2κpd = 0 ∈ R∗(Mg, ?)/
√

0.

We already know that the class κpd is nilpotent by part (i) of this proposition, and so

we have that κepd = χpd modulo nilpotence in R∗(Wg, ?)/
√

0.

We know that, by (i), the class κe2 = κpd is nilpotent, and so by (ii) of Lemma 5.1

it follows that e ∈ R∗(Wg, ?) is also nilpotent in the case that g > 1. Since pd = e2 is

nilpotent, κepd = κe3 is also nilpotent in R∗(Wg, ?). Then since the natural inclusion

map R∗(Wg, ?) ↪−→ R∗(Wg) is injective (part (iii) of Lemma 5.1), κe3 is nilpotent in

R∗(Wg), as desired.

We invite the reader to carefully consider the proof of Proposition 3.3 and consider

where the hypothesis that d be even is used. The reader who does this will note that

the only times we used the d-odd hypothesis were when we referenced Theorem 3.4,

Theorem 3.2 and Lemma 5.1—all of which have the hypothesis that d be odd. We

already know that Theorem 3.2 relies on the d-odd hypothesis because Theorem 3.1

does. So if we are looking for the root need for the d-odd hypothesis, we need to consider

Theorem 3.4, Theorem 3.1 and Lemma 5.1.

We will devote Section 6 to considering the obstructions that Theorems 3.1 and 3.4

represent in allowing us to generalize Theorem 2.1. For the remainder of this section,

we will turn our attention to Lemma 5.1 to explore the need for the d-odd hypothesis.

As it turns out, Lemma 5.1 relies on the d-odd hypothesis for exactly the same reason

that Theorem 3.2 does—because it relies on Theorem 3.1. This gives us the important

result that the only two obstructions that we have for generalizing our main theorem,

Theorem 2.1, to the case that d is even are found in Theorem 3.1 and Theorem 3.4.



5 PROPOSITION 3.3 REVISITED 25

5.1 Lemma 5.1 and the d-odd hypothesis

We will begin by proving Lemma 5.1, and follow by discussing the need for d to be odd.

As it turns out, parts (i) and (ii) of Lemma 5.1 are examples in [Gri13]: part (i) is a

slight modification of Example 5.19 in [Gri13], as explained in [GGRW17, Lemma 3.2],

and part (ii) is Example 5.17 of [Gri13]. Thus the only proof to give is that of part

(iii), in order to show that it does not rely on the d-odd hypothesis at all.

Proof of Lemma 5.1, part (iii). Let x ∈ R∗(Wg) such that x = 0 in R∗(Wg, ?), and let

π : E → B be a fiber bundle with fiber Wg. Now consider the pullback of π : E → B

over π, i.e. the pullback π′ : π∗E → E in the following diagram

π∗E E

E B.

π′ π

π

Note that the fiber bundle π′ has fiber Wg. Using the category theoretic definition of a

pullback, we can consider π∗E as the equalizer in the following diagram

π∗E E × E E

E B.

π

π

It is easy to see that the diagonal map ∆ : E ↪−→ E × E maps into the image of π∗E,

which gives us a canonical section of π′ : π∗E → E.

Then recall that by hypothesis, π∗(x(π)) = 0, and note that by the push-pull formula

and the fact that π!(e(Tπ)) = χ = 2− 2g, we know that

(2− 2g) · x(π) = π!(e(Tπ)) · π∗(x(π))).

Since π∗(x(π)) = 0, we have that π!(e(Tπ)) · π∗(x(π))) = π!(0) = 0 and thus that

(2− 2g) · x(π) = 0. Since 2− 2g 6= 0 by hypothesis, we must have that x(π) is torsion,

but because we have taken coefficients in Q, x(π) = 0.

As stated before, the proof of Lemma 5.1, part (iii) does not rely on the hypothesis

that d is odd, and so we can disregard it for our purposes. We thus turn our attention

to parts (i) and (ii), which come, respectively, from Examples 5.19 and 5.17 in [Gri13].

These examples require some background material which is out of the scope of this

paper. We invite the enthusiastic reader to read [Gri13, §5] in order to fully understand
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the examples. Regardless of the reader’s background, however, it is clear by simply

reading these two examples from [Gri13] that the reason for the d-odd hypothesis in

Lemma 5.1 is that these results rely explicitly on Theorem 3.1. Indeed, [Gri13, §5] is

devoted to generating relations in the tautological ring by using [Gri13, Theorem 2.7],

which is, for us, Theorem 3.1. That these two examples revolve around [Gri13, Theorem

2.7] is stated explicitly in Example 5.17, and in Example 5.19 the author says, “We

obtain a relation in the cohomology by applying the second part of Theorem 2.7.”

6 Moving Forward

The ultimate goal of this paper is to give insights for moving forward with generalizing

the main theorem, Theorem 2.1, to the case that d is even. This section will be devoted

to drawing on the material from Sections 1 through 5 in order to give a clear, precise

picture of the exact reasons which prevent us from using arguments from [Gri13] to give

a similar, conclusive result in the case that d is even.

The first thing we ought to do is give an idea for what we might expect, in order to

not be chasing results which will end up being false. That is to say, we might naively

wish to find a proof of Theorems 3.1 and 3.4 which is independent of parity. Doing so

would induce a contradiction because, as we mentioned in Section 2, by Proposition 2.3

we know that if d is even, R∗(Wg)/
√

0 has as a subring Q[κep1 , κep2 , ..., κepd ] when g > 1.

That is, κepd is not nilpotent as it is in the case when d is odd. Indeed, by Proposition

2.3 we know that Q[κep1 , κep2 , ..., κepd ] is a subring of R∗(Wg)/
√

0 when g 6= 1.

What we need is a set of generators for R∗(Wg)/
√

0 in the case that d is even. If we

are to hope for the most natural and simple outcome, we might expect for the following

result:

Conjecture 6.1. Let d be even. Then:

(i) For any g, R∗(Wg)/
√

0 is generated by the κepi.

(ii) R∗(W1)/
√

0 = Q,

which carries as a corollary that R∗(Wg)/
√

0 = Q[κep1 , κep2 , ..., κepd ] if g 6= 1. In fact, as

we mentioned in Section 2 we know that R∗(W1)/
√

0 = R∗(W1) = Q[κep1 , κep2 , ..., κepd ]

regardless of the parity of d, and so Conjecture 6.1 holds if g = 1.
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Theorem 2.1

Proposition 2.2 Proposition 2.3

Theorem 3.2 Proposition 3.3 (i) and (ii) Proposition 3.3 (iii)

Theorem 3.1 Theorem 3.4 Lemma 5.1

Figure 3: The main results mentioned in this document. An arrow between results
indicates that the first is used in the proof of the second. The results in bold are the
most basic results, supporting the rest, and have the hypothesis that d is odd. For every
result besides those two, the need for the d-odd hypothesis comes from those results
which support it.

Let us recall the proof of Proposition 2.2, which gives the generators for R∗(Wg)/
√

0

when d is odd. It is broken up into three parts:

1. Proposition 3.3 (i) and (ii) imply that for any g, R∗(Wg)/
√

0 is generated by the

elements κep1 , κep2 , ..., κepn ,

2. If g = 1 then Theorem 3.2 and Proposition 3.3 (i) imply that each of the κepi are

nilpotent, giving that R∗(W1)/
√

0 = Q, and

3. If g > 1, Proposition 3.3 (iii) implies that κepd is nilpotent.

Right away, we know that Proposition 3.3 (iii) cannot hold for d even, because it implies

that κepn is nilpotent, which is false. Looking at Figure 3 we can see that if Theorem

3.1 were true for the d-even case, then Proposition 3.3 would also be true for d-even.

And thus we have the following result:

Corollary 6.2. Theorem 3.1 is false if d is even.

which gives definitive closure to our skepticism that the arguments from [Gri13], specif-

ically those involved with Theorem 3.1, would not generalize to the case that d is even.
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More importantly, we note that if Proposition 3.3 (i) and (ii) are true for d even,

then we have our desired generators from Conjecture 6.1. However, by again consulting

Figure 3 we can see that these results have the d-odd hypothesis precisely because their

proofs rely on both Theorems 3.1 and 3.4, the first of which is false if d is even. Likewise,

the proof that R∗(W1)/
√

0 = Q if d is odd relies on Theorem 3.2 and Proposition 3.3

(i) which, respectively, rely on Theorem 3.1 and Theorem 3.4.

7 Conclusion

There are a few different directions that one could take research from this point. To

prove Conjecture 6.1 or a similar result, the next important step is to find generators

of R∗(Wg)/
√

0. We know that we cannot use the results from [Gri13], as they do not

generalize to the case that d is odd. We might try to salvage the rest of the structure

and try to prove Proposition 3.3 (i) and (ii) for d even, without using Theorem 3.1 and

despite the fact that Theorem 3.4 no longer shows that all of the κL̃i are nilpotent. The

other option, of course, is to find generators in some other way. Randal-Williams has

made some progress by considering torus actions in [RW16] on S2×S2, where he proves

that the Krull dimension of R∗(S2×S2) is 3 or 4. It is likely that any more research on

the d-even case will require methods and ideas that are out of the scope of this paper.

In order to prove some result for any d we might also try changing coefficients from

Q to Z2, or considering a slightly different manifold such as g(Sd−1×Sd+1) for the fiber

of our bundles. Both of these ideas could yield techniques and theory which is useful

for understanding R∗(Wg)/
√

0 when d is even.

We could also continue with the tools which we have already from the d-odd case

and change our manifold slightly to be the connected sum of g copies of Sk ×S2n−k for

d odd, g > 1 and n ≥ k. From [RW16, Corollary 4.1] we have that the map

Q[κep1 , κep2 , ..., κepn−1 ]→ R∗(g(Sd × S2n−d))/
√

0

surjects. This is a generalization of the results presented here from [GGRW17], which

proved the case that n = d. The obvious next step forward is to understand the

algebraic relations between these generators κepi .

At a more basic level, as Grigoriev mentions, the results of [Gri13] are based on the

methods of Randal-Williams from [RW12], which are in turn based on Morita’s work

in [Mor89]. It might be possible that more methods can be found from studying these

two papers.
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Finally, the results from Ebert and Randal-Williams in [ERW14] suggest that a

suitable definition for kappa classes could be made for topological and block bundles.

This would allow us to consider the tautological ring in a more general setting. As

Grigoriev mentions in [Gri13], this doesn’t come immediately and requires some fine-

tuning.
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8 Appendix

Here in the Appendix we will give the necessary background for the main content of this

paper. This should enable any reader who has taken a standard introductory course

in algebraic topology to be able to read and understand this entire document. For the

reader who lacks this basic background, we recommend either [Hat05] or [Mas90] for

an excellent introduction to homology and homotopy theory.

A Fiber Bundles and Fibrations

Fiber bundles and fibrations play a central role in the theory of tautological rings

and characteristic classes. They generalize the familiar notion of a covering space in

homotopy theory, and also relate to the notion of a sheaf in algebraic geometry. In this

section, we will give a brief introduction to fiber bundles and fibrations. We direct the

reader who wishes to find a more thorough introduction to the material to read from

[Hat09] or [Hus75]. We will begin via a specific (and very important) example of a fiber

bundle called a vector bundle.

Definition A.1 (Vector bundle). Let π : E → B be a continuous surjection of topo-

logical spaces E and B. Then π : E → B is a k-dimensional real vector bundle if the

following conditions are satisfied:

• For all b ∈ B, π−1(b) is a finite-dimensional real vector space of dimension k.

• There exists an open cover {Uα}α∈I of B such that for all Uα there exist homeo-

morphisms

φα : π−1(Uα)
∼−→ Uα × Rn

taking π−1(b) to {b} × Rn via a linear isomorphism.

• If α, β ∈ I, then the composition φ−1
β ◦ φα : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk is

well-defined and satisfies

φ−1
β ◦ φα(x, v) = (x, gαβ(x)v)

for some GL(k)-valued function

gαβ : U ∪ V → GL(k).
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• These maps satisfy

gαα = I and gαβ(x)gβγ(x)gγα(x) = I

The maps φα are called the local trivializations of the vector bundle, the maps φ−1
β ◦φα

are called transition functions, the last condition is called the cocycle condition, and

the spaces E and B are called, respectively, the total space and the base space. Thus

if a map π : E → B has a vector bundle structure on it, we are saying that locally π

looks like a projection map of the form U × Rn → U . In other words, E is locally the

product of B with Rn. We would like to give the reader a few examples with which to

understand this definition.

Example A.2 (Trivial bundle). The most obvious example of a vector bundle is the

natural projection map

B × Rn → B.

The local product structure exists because of the global product structure. This example

is called the trivial bundle.

Example A.3 (Möbius bundle). Consider the space E = ([0, 1] × R)/ ∼, where ∼ is

the equivalence relation (0, x) ∼ (1,−x). There is a retraction E → B = S1 via the

map (t, x) 7→ t, which clearly has the structure of a real vector bundle by taking any

open cover of S1 which does not contain the whole space.

This is our first nontrivial example of a vector bundle. We can show this by using

sections of the vector bundle. A section of a real vector bundle is simply a continuous

map s : B → E such that π ◦ s = IdB. In other words, s is a section if it maps each

point of B into its fiber and does so continuously.

Note that the trivial bundle has sections of the form b 7→ (b, t) for some constant t,

in particular for which there is no b ∈ B such that b 7→ (b, 0) if t 6= 0. However, in

the case of our bundle, it is obvious to see that every section must have a point b ∈ S1

such that using the isomorphism φ : π−1(b)
∼−→ {b} × R, φ ◦ s(b) = (b, 0) because of the

intermediate value theorem and the quotient by (0, x) ∼ (1,−x). Thus π : E → B is a

nontrivial example of a real vector bundle.

Note that E is homeomorphic to the Möbius strip with its boundary circle deleted,

and so we call this particular real vector bundle the Möbius bundle.

Example A.4 (Tautological bundle). The final example of a real vector bundle which

we will give is called the tautological bundle, which is a bundle over a Grassmanian
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manifold Gn(Rn+k). Recall that the Grassmanian manifold, as a set, is the set of n-

dimensional subspaces of Rn+k. Thus we can construct a total space E as the set of

all (V, v) where V ∈ Gn(Rn+k) is an n-dimensional subspace of Rn+k and v ∈ V . We

topologize this as a subspace of Gn(Rn+k)×Rn+k and get a vector bundle structure via

the obvious map π : (V, v) 7→ V .

Example A.5 (Locally free sheaves). In the context of algebraic geometry and scheme

theory, an example of a vector bundle is a locally free sheaf.

The reader will note that, in all but Example A.3, we did not use any specific

properties of R beyond its vector space structure. There are analagous definitions and

examples in the case that we replace R with C, which is straightforward to work out.

We leave it to the reader to work out the examples which correspond to Examples A.2

and A.5 in the complex case.

We can generalize these ideas further to the notion of a fiber bundle, in which we

replace R or C from the examples above with any topological space X. Recall that

for any map of topological spaces f : A → B, the fiber of f over a ∈ A is simply the

preimage f−1(a).

Definition A.6 (Fiber bundle). Let π : E → B be a continuous map of topological

spaces E and B. Then π : E → B is a fiber bundle if the following conditions are

satisfied:

(i) For all b ∈ B, π−1(b) is homeomorphic to a fixed topological space F

(ii) There is an open cover {Uα}α∈I with isomorphisms

φα : π−1(Uα)
∼−→ Uα × F

which restricts on fibers to a homeomorphism.

(iii) If α, β ∈ I, then the composition φ−1
β ◦ φα : (Uα ∩ Uβ) × F → (Uα ∩ Uβ) × F is

well-defined and satisfies

φ−1
β ◦ φα(x, v) = (x, gαβ(x)v)

for some Aut(F )-valued function

gαβ : U ∪ V → Aut(F ).
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(iv) These maps satisfy

gαα = Id and gαβ(x)gβγ(x)gγα(x) = Id

As before, the φ−1
β ◦ φα are called transition functions, the last condition is called the

cocycle condition, E is called the total space, B is the base space and we call F the

fiber. Diagrammatically, a fiber bundle is often drawn as

F E

B,

which gives it the feel of a “short exact sequence of spaces.” One can think of fiber

bundles intuitively as a quotient, similar to a group quotient, where F takes on the

same role that a normal subgroup plays in a group quotient.

As we might hope with any object we define, fiber bundles form a category. Maps

of fiber bundles, which we simply call bundle maps, are commuting squares

E E ′

B B′,

(17)

where E → B and E ′ → B′ are fiber bundles and all the maps are continuous. If we fix

a base space B, we can define a category of fiber bundles over B by defining morphisms

to be commuting squares such as (17) with the condition that the map on the bottom

row be the identity map.

One important feature of fiber bundles is that they have the homotopy lifting prop-

erty. Recall that π : E → B has the homotopy lifting property with respect to a space

X if, for all homotopies

h : [0, 1]×X → B,

if there exists a map f0 : {0} ×X → E such that π ◦ f0 = h|{0}×X , then there exists a

homotopy f : [0, 1] × X → E such that π ◦ f = h and f |{0}×X = f0. A fibration is a

surjection π : E → B which satisfies the homotopy lifting property with respect to any

space.

Example A.7 (Covering spaces). If F is discrete we get a fiber bundle which is familiar

to any beginning student of algebraic topology, namely a covering space.
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Example A.8 (Hopf fibration). One famous example of a fibration which is applicable

to homotopy theory is the Hopf fibration

S1 S3

S2.

p

The map p : S3 → S2 can be constructed by giving S3 the structure of the complex

subspace of C2 given by {(z0, z1) | |z0|2 + |z1|2 = 1} and S2 the structure of a subspace

of C× R given by {(z, x) | |z|2 + x2 = 1}. Then p is given by

(z0, z1) 7→ (2z0z
∗
1 , |z0|2 − |z1|2).

As denoted by the name, it is a standard result that p : S3 → S2 is a fibration.

Example A.9 (Homotopy Fibration). In this example we will give an important con-

struction of a fibration, called the homotopy fibration, which we use in Section 4.

Given any map f : E → B, we can associate a topological space

Ef := {(e, p) | e ∈ E and p : I → B such that p(0) = f(e)}.

Ef is topologized as a subspace of E × BI , where BI is the function space of paths in

B. There is a natural map, given by

Ef
f ′→ B : (e, p) 7→ p(1),

which we claim is a fibration. To show this, consider a homotopy g : I ×X → B and

take a map g̃0 : X → Ef such that g̃0 ◦ f ′ = g0, where g0 = g|{0}×X . We can extend

g̃0 to a homotopy g̃ : I × X → Ef which lifts g in the following way: Let γx be the

image of I × {x} under g and we write (ex, σx) = g̃0(x). We define g̃ to be the map

(t, x) 7→ (ex, γ̃x(t)), where γ̃x(t) is the path from f(ex) to γx(t) which follows the path

γx ◦ σx. It is easy to see that g̃ lifts g, and so f ′ : Ef → B is a fibration.

Note that we can embed E into Ef via the map e 7→ (e, pconst(e)), where pconst(e) is the

constant map I → {e}. By contracting the paths in Ef , we have that Ef deformation

retracts onto E and thus that E and Ef are homotopy equivalent. Furthermore, the

following diagram commutes:
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E Ef

B.

f
f ′

We call the fiber of a point ∗ ∈ B under f ′ to be the homotopy fiber at ∗. One can think

of Ef as a fattening of E which gives us desirable homotopy-theoretic properties, and

the homotopy fiber simply as the fiber under this “fattening.”

There are variations of the definition of a fiber bundle, depending on the structure

on the spaces which we care about. For example, if we care about a smooth structure on

F , E and B then we alter the definition slightly to include that all the maps in question

be smooth, and that the homeomorphisms be diffeomorphisms. Likewise, bundle maps

have the additional condition that they be smooth maps. These are called smooth

bundles. This leads us to an important example of a vector bundle.

Example A.10 (Vertical tangent bundle). Let Mn be a smooth manifold embedded in

some RN , N > n. The tangent bundle over M is the subset of M × Rn defined by

{(m, v) |m ∈M ⊂ RN and v is in the tangent space of m}.

By this definition, every smooth manifold has a unique tangent bundle.

Given a smooth map of smooth manifolds, f : X → Y , recall the basic definition

from calculus on manifolds that Df is a map from the tangent bundle of X to the

tangent bundle of Y which restricts to a linear map on fibers. If Df is a surjection on

the tangent space of each point, there exists a natural vector bundle which is associated

to f , called the vertical tangent bundle, which is defined simply by Tf := kerDf .

Another variation, which we will introduce in the next section, is called a principal

G-bundle. We mention one final result which illustrates the importance of fibrations in

the study of homotopy groups.

Theorem A.11 (Theorem 4.41 of [Hat05]). Let π : E → B be a fibration with B path

connected. Then there is a long exact sequence of homotopy groups

· · · → πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ · · · → π0(E, x0)→ 0

Because the universal cover of S1 is contractible, and a covering map is a fibration, it

follows immediately that π1(S1) = Z and πi(S
1) = 0 for all i 6= 1. Then using, for
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example, the Hopf fibration S3 → S2, the long exact sequence of homotopy groups

gives that for all i > 2, πi(S
2) ∼= πi(S

3).

B Principal G−bundles and the Universal Bundle

An important example of a fiber bundle is a principal G-bundle. Indeed, it is on

the theory of principal G-bundles that the theory of characteristic classes, and thus

of this entire document, rests. In this section we will give a brief introduction to

principal G-bundles, following the notes Mitchell and Kottke in, repsectively [Mit01]

and [Kot12]. We recommend that the interested reader consult these notes for a more

in-depth treatment of the subject.

Let G be a topological group. Then a left G-space is a topological space X equipped

with a continuous left G-action G × X → X. Equivalently, a left G-space is a space

X equipped with a group homomorphism from G to the group of homeomorphisms

X → X. If X and Y are G-spaces, then a G-equivariant map is a map φ : X → Y such

that φ(gx) = gφ(x) for all g ∈ G and x ∈ X.

Now let E and B be G-spaces such that the action of G on B is trivial, and consider

a G-map π : E → B. Then π : E → B is a principal G-bundle if it satisfies similar

local triviality conditions as a fiber bundle. That is, B has an open cover {Uα}α∈I such

that, for all α there exist G-equivariant homeomorpihsms φα : π−1(Uα)→ U ×G such

that the following diagram commutes:

π−1(Uα) U ×G

U.

φα

π

Note that the fibers are copies of G. The G-equivariant homeomorphisms φα could be

any map which makes the diagram commute, and so in particular there is not always a

canonical identity element in π−1(b) for any particular b. We call these fibers G-torsors,

which are to groups what affine spaces are to vector spaces.

Example B.1. A normal covering map (i.e. a covering map corresponding to a normal

subgroup of the fundamental group of the base space) is a principal G-bundle, where G

is the group of deck transformations.

Note that the G-equivariant homeomorphisms φα give us a canonical G-action on

π−1(Uα), given by g · (u, h) = (u, g · h). Furthermore, this action is free and transitive.

Thus B is the orbit space of the G-space E, i.e. B ∼= E/G. We proceed with a basic
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fact about principal G-bundles. For proofs of the results in this section which we do

not supply, we direct the reader to [Mit01].

Lemma B.2. Any morphism of principal G-bundles is an isomorphism.

Now let π : P → B be a principal G-bundle and consider a map f : B′ → B. We

allow this to be any continuous map, and then give it the structure of a G-equivariant

map simply by endowing B′ with the structure of a G-space via the trivial G-action.

We can form the category theoretic pullback P ′ ≡ f ∗P ≡ B′ ×B P ; it is easy to see

that P ′ inherits the structure of a principal G-bundle over B′ from P .

We can immediately note that, as a purely categorical fact, bundle maps Q → P ′

are in bijective correspondence with commutative diagrams of the form:

Q P

B′ B.

(18)

By Lemma B.2 we have thatQ is isomorphic to P ′ if and only if there exists a commuting

diagram such as (18). Thus, for any given map B′ → B there exists only one possible

principal G-bundle, up to isomorphism, which will make (18) commute. The following

fact, Theorem B.3, allows us to go further and say that for any given homotopy class

of maps in [B′, B] there exists a principal G-bundle unique up to isomorphism which

makes (18) commute.

Theorem B.3. Let P → B be a principal G-bundle over an arbitrary space B, and

suppose that X is a CW-complex. Then if f, g : X → B are homotopic maps, the

pullbacks f ∗P and g∗P are isomorphic as principal G-bundles over X.

If we are given a principal G-bundle P → B and a CW-complex B′, we could in

theory classify those principal G-bundles which can be achieved as pullbacks of P → B

by the homotopy class of maps which pull it back. A priori, we might run into problems

because assigning a principal G-bundle the map by which it is a pull-back of P → B

might not even be well-defined. We would like for this notion to be well-defined, and

ideally to be able to say that any principal G-bundle over B′ is a pullback of P → B.

As it turns out, this can be achieved for certain types of principal G-bundles.

Theorem B.4. Let P → B be a principal G-bundle. Then P is weakly contractible if

and only if for all CW-complexes X, there is a bijective correspondence between [X,B]

and principal G-bundles over X via the map f 7→ f ∗P .
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We can actually relax the condition that X be a CW-complex to just requiring

paracompactness, but for our purposes we will simply use CW-complexes. Under the

hypotheses of Theorem B.4 hypotheses we call B a classifying space of G and P → B

a universal bundle. A classifying space of a topological group G is most commonly

written as BG, while the universal bundle is most commonly written EG. As it turns

out, classifying spaces and universal bundles of a topological group are unique up to

homotopy equivalence, and so BG and EG are often referred to as “the” classifying

space (resp. universal bundle) of G when only the homotopy type is needed. In partic-

ular, when investigating the homology, cohomology or homotopy groups of a classifying

space we can refer to “the” classifying space BG. We give another remarkable result,

which will allow us, among other things, to define characteristic classes in the next

section.

Theorem B.5. Let G be a topological group. There exists a classifying space for G.

We will finish this section by giving the theory of balanced products and structure

groups, which will also play an important role in the definition of characteristic classes.

Let W be a right G-space and X a left G-space. Then the balanced product W ×G X
is the quotient space W × X/ ∼, where (wg, x) ∼ (w, gx). (We note here that this

is different from a pullback, despite the similarity in notation.) We could equivalently

convert X into a right G-space by setting gx = xg−1 and take the orbit space of W ×X
under the diagonal action (w, x)g = (wg, g−1x). Note that if X = ∗ is a point, then

W ×G ∗ is simply the orbit space W/G.

Now, suppose that π : E → B is a principal G-bundle and let F be a left G-

space. Since F → ∗ is G-equivariant, and E ×G ∗ = B we have an induced map

E ×G F → E ×G ∗ = B which has the structure of a fiber bundle with fiber F . We

call a local product of this form a fiber bundle with fiber F and structure group G. We

also call E ×G F the associated fiber bundle to E with fiber space F . Because F is a

left G-space, there is a group homomorphism G → Aut(F ) corresponding to the left

action. In most of our examples we will be interested in the case that G = Aut(F ) and

this homomorphism is a group isomorphism.

Example B.6. An n-dimensional real vector bundle is a fiber bundle with fiber Rn

and structure group GLn(R). If we give our vector bundle an inner product, then

the structure group will be O(n). If we give our vector bundle an orientation, then the

structure group will be SLn(R) or SO(n). The analogous results hold for complex vector

bundles.
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The final result of this section forms the basis for the theory of our next section,

characteristic classes.

Theorem B.7. Given any fiber bundle π : E → B with fiber F and structure group

Aut(F ), there exists a principal Aut(F )-bundle P such that E = P ×G F .

In light of Theorem B.7, consider a fiber bundle π : E → B with fiber F . We

can choose Aut(F ) depending on the bundle we’re interested—for example, if we are

looking at a smooth bundle then we let Aut(F ) = Diff(F ), the diffeomorphism group

of F . We can then find its associated principal Aut(F )-bundle (i.e. the bundle P such

that E = P ×Aut(F ) F ). By Theorem B.4 there is a homotopy class of maps, called the

classifying map, which classifies P as a principal Aut(F )-bundle. It is these maps upon

which the theory of characteristic classes is built.

C Characteristic Classes

When studying principal G-bundles, a useful tool for studying “how nontrivial” the

bundles are (whatever that means) is to study its classifying map. We know from

Appendix B that principal G-bundles over a CW-complex X are in bijective correspon-

dence with the set [X,BG] of homotopy classes of maps. However, in most cases it is

not at all straightforward to find and study these maps. Instead, we use the ever-useful

tool of cohomology to study the maps on cohomology which are induced by the maps

in [X,BG]. This gives us the definition of a characteristic class of a principal G-bundle.

Definition C.1. Let π : E → B be a principal G-bundle with classifying map [ϕ] ∈
[B,BG]. If c ∈ H∗(BG), then the characteristic class c(E) ∈ H∗(B) is the image of c

under the map ϕ∗ : H∗(BG)→ H∗(B).

Immediately from this definition, we have that if E1 and E2 are isomorphic principal

G-bundles over X, then their characteristic classes are isomorphic. Likewise, if E =

B ×G is the trivial principal G-bundle, then its classifying map is nullhomotopic, and

so its characteristic classes must be trivial.

Characteristic classes can also be defined for arbitrary fiber bundles with fiber F

and structure group Aut(F ). Given such a bundle, by Theorem B.7 we know that

there exists a principal Aut(F )-bundle P such that E = P ×Aut(F ) F . Since P has a

classifying map, we can study the characteristic classes of P via this classifying map.

The definition of these characteristic classes is similar to that in Definition C.1.
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Definition C.2. Let π : E → B be a fiber bundle with fiber F , structure group Aut(F )

and associated principal Aut(F )-bundle P with classifying map [ϕ] ∈ [B,BAut(F )].

Then if c ∈ H∗(BG), the characteristic class c(E) ∈ H∗(B) is defined to be the image

of c under the map ϕ∗ : H∗(BAut(F ))→ H∗(B).

There are other formal ways to define characteristic classes, which defines each class

as a functor that sends a vector bundle to its characteristic class in H∗(B). These

definitions are equivalent to those we have given (see [Kot12]).

We are now going to shift our attention to characteristic classes of vector bundles.

As we noted in Appendix B, an n-dimensional real vector bundle is a fiber bundle with

fiber Rn and, depending on whether or not we have inner products and orientations,

structure group GLn(R), SLn(R), O(n) or SO(n). For the purposes of this paper

we will focus our attention on vector bundles with structure group SO(n)—i.e. on

smooth, oriented vector bundles. A particularly useful example of such vector bundles

are tangent bundles of smooth manifolds, which play a vital role in the material of this

paper.

For a vector bundle E → B, there are four main types of characteristic classes,

which are:

1. Stiefel-Whitney classes wi(E) ∈ H i(B;Z/2) for a real vector bundle

2. Chern classes ci(E) ∈ H2i(B;Z) for a complex vector bundle

3. Pontryagin classes pi(E) ∈ H4i(B;Z) for a real vector bundle

4. The Euler class e(E) ∈ Hn(B;Z) for an oriented n-dimensional vector bundle.

As it turns out, we can give a full description of H∗(BSO(n);Z) in terms of the

Potryagin and Euler classes. Our focus for the rest of this section will be to give a

definition for the Pontryagin and Euler classes and then give the mentioned description.

The Pontryagin classes are defined in terms of the Chern classes, which are elements of

H2∗(BSO(n)) and which can in turn be defined by using Schubert cycles. We will not

give a description of Chern classes, but direct the interested reader to [Hat09, Chapter

3]. The definition of Pontryagin classes is as follows:

Definition C.3 (Pontryagin classes). Let E → B be a real vector bundle. Then the

kth (integral) Pontryagin class of E, written pk(E), is given by

pk(E) = (−1)kc2k(E ⊗ C) ∈ H4k(B;Z),

where E ⊗ C is the complexification of E, given by E ⊗ C = E ⊕ iE.
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The Euler is in some sense a refinement of the Pontryagin classes, as we will see

later on. Recall first that the Euler class is for oriented vector bundles. Choosing an

orientation for a vector bundle is the same as choosing a generator of Hn(F, F \ F0;Z)

for each fiber, where F0 is the zero element. Then via the Thom isomorphism (see, e.g.

[Hat09, §3.2]) this gives us a so-called orientation class u ∈ Hn(E,E \E0;Z), where E0

is the zero section of E. Then using the zero section we get an inclusion B ↪−→ E, and

thus inclusions of pairs

(B, ∅) ↪−→ (E, ∅) ↪−→ (E,E0).

Then under the induced maps,

Hn(E,E \ E0;Z)→ Hn(E;Z)→ Hn(B;Z)

the image of u ∈ Hn(E,E \ E0;Z) is the Euler class. It is a standard result that If

E → B is an oriented vector bundle of dimension 2n then e(E)2 = pn(E).

As we said before, the interests of this paper center on smooth, oriented vector

bundles (tangent bundles of smooth manifolds) and their characteristic classes. In

particular we are interested in the rational cohomology ring H∗(BSO(n);Q), as SO(n)

is the structure group of such vector bundles. In a very convenient fashion, these rings

have a very simple presentation.

Theorem C.4. H∗(BSO(n);Q) is the Q-polynomial ring generated by the Potryagin

classes pi and the Euler class e. If n = 2d, then

H∗(BSO(2d);Q) = Q[p1, ..., pd−1, e].

Note that the generators of H∗(BSO(2d);Q) do not include pd because e2 = pd.

Characteristic classes of vector bundles are particularly well-understood and we now

have excellent tools with which to work with them. This is not true for most other kinds

of characteristic classes. In an arbitrary fiber bundle with fiber F and structure group

Aut(F ), the cohomology ring H∗(BAut(F );G) can be very difficult to understand.

In Section 1.1 we define generalized Miller-Morita-Mumford classes of a smooth fiber

bundle E → B, which are the simplest characteristic classes of smooth fiber bundles to

understand. The reason they are so simple is because they draw on the characteristic

classes of a natural, associated vector bundle over E and then push them down to

classes in H∗(B). That they are characteristic classes of the bundle E → B means that

they are in the image of H∗(BDiff(F )), where F is the fiber, and that they are natural

with respect to bundle maps. Other than that, for a smooth manifold F , a priori the



D COHOMOLOGY WITH LOCAL COEFFICIENTS 42

characteristic classes of a bundle with fiber F , given by H∗(BDiff(F )), are not easy to

understand. For a more thorough treatment of this subject, we direct the reader to

[MS74] or [Kot12].

D Cohomology with local coefficients

There are two equivalent approaches to defining cohomology with local coefficients, each

of which has its strengths. The first is more algebraic, and deals with Zπ1-modules,

and the second is more topological, where we consider fiber bundles whose fibers are

abelian groups. We will need elements of both to properly understand the content of

this paper, and so we will give a brief introduction to each one. We follow [KD01,

Chapter 5] and [Hat04], and invite the reader who wishes to know more to read from

these texts.

We will first proceed with the algebraic definition. We remind the reader that, given

a (not necessarily abelian) group π, the group ring Zπ is the ring consisting of linear

combinations of elements of π with coefficients in Z. Addition is given component-wise:(∑
nigi

)
+
(∑

migi

)
=
∑

(ni +mi)gi.

Multiplication is given by the distributive law, using multiplication in π:(∑
i

nigi

)(∑
j

mjgj

)
=
∑
i,j

(nimj)(gihj).

Now let A be an abelian group and consider a representation ρ : π → AutZ(A) of A.

This gives A the structure of a lef Zπ-module—indeed, left Zπ-modules are in bijective

correspondence with representations ρ : π → AutZ(A) of A.

Let X be a path connected and locally path connected topological space which

admits a universal cover, and consider π = π1(X). Consider the universal cover X̃ of

X, and note that, via deck transformations, the singular chain complex S∗(X̃) of the

universal cover is a right Zπ-module, where the action of g ∈ Zπ on some σ ∈ S∗(X̃) is

given by composing σ with the deck transformation g : X̃ → X̃.

We will now give the definition for cohomology with local coefficients in A.

Definition D.1. Given a left Zπ-module A, form the cochain complex

S∗(X;A) = HomZπ(S∗(X̃), A).
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The cohomology of this complex is called the cohomology of X with local coefficients in

A and is written

H∗(X;A).

We make the rather intuitive note here that maps and tensor products of local

coefficient systems correspond to maps and tensor products of Zπ-modules.

If we wish to emphasize the representation ρ : π → Aut(A) corresponding to A, we

writeH∗(X;Aρ) and call this the cohomology of X twisted by ρ. We make the fascinating

note here that the ordinary cohomology of X with integral coefficients corresponds to

the trivial representation (see e.g. [KD01, §5.2]). On the other extreme, if A is a finitely

generated free Zπ-module, then the cohomology of X twisted by ρ is the cohomology

of X̃ with (untwisted) coefficients in Z. In this case, A corresponds to the tautological

representation ρ : π → Aut(Zπ), given by

ρ(g) =
(∑

mhh 7→
∑

mhgh
)
.

As it turns out, the (untwisted) cohomology of any cover of X can be obtained by the

correct choice of local coefficients. From the algebraic point of view, this fact is quite

remarkable. It becomes more intuitive in light of the more topological approach to local

coefficients.

We now wish to give the definition of local coefficients via this approach, using a

local coefficient system. Recall that a local coefficient system over X is a fiber bundle

over X whose fiber is a discrete abelian group A with structure group G ≤ Aut(A).

(Note that this implies that a local coefficient system is a covering map.)

Let p : E → X be a system of local coefficients, and denote p−1(x) by Ex. We

will construct a cochain complex by first defining a chain complex with differential ∂,

and then using ∂ to define a cochain complex with differential δ. The chain complex

Sk(X;E) is defined in the obvious way, by taking formal sums of the form

m∑
i=1

aiσi

where σi : ∆k → X is a singular k-simplex, and ai is an element of Eσi(e0) where

e0 = (1, 0, ..., 0). That is, Sk(X;E) is the abelian group of formal sums of singular

k-simplices σ which have coefficients in the fiber of the baspoint σ(e0). We can consider
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Sk(X;E) as a subgroup of the direct sum⊕
x∈X

Sk(X;Ex).

The differential ∂ is a bit tricky to define because we have to take into account the

fact that every k-simplex has one face that does not contain e0. This means that one

of the face maps, which are given by

fkm(t0, t1, · · · , tk−1) = (t0, · · · , tm−1, 0, tm, · · · , tk−1),

does not preserve the basepoint—specifically, fk0 does not preserve the basepoint, as

(1, 0, · · · , 0) 7→ (0, 1, 0, · · · , 0).

To remedy this, we will induce an isomorphism of groups over the fibers of e0 ∈ ∆k

and the image of e0 under fk0 via the path γσ given by σ(t, 1 − t, 0, 0, · · · , 0). Then

γσ defines an isomorphism of groups Eσ(0,1,··· ,0)
∼−→ Eσ(1,0,0,··· ,0) because p : E → X

has a discrete fiber, and is thus a covering map. Then we define our differential ∂ :

Sk(X;E)→ Sk−1(X;E) by

aσ 7→ γσ(a)(σ ◦ fk0 ) +
k∑

m=1

(−1)ma(σ ◦ fkm).

We did not give it, but there is an algebraic definition of homology with local coefficients

(which is a natural analogue to the definition we gave for cohomology) to which this

is equivalent. Now that we have Sk(X;E) and ∂, we are ready to give our topological

definition of cohomology with local coefficients.

We let Sk(X;E) be the set of maps c such that

(σ : ∆k → X) 7→ c(σ) ∈ Eσ(e0).

Note that Sk(X;E) is an abelian group. We define the boundary operator δ : Sk(X,E)→
Sk+1(X;E) as follows:

(δc)(σ) = (−1)k

(
γ−1
σ (c(∂0σ)) +

k+1∑
i=1

(−1)ic(∂iσ)

)
.

It is not difficult to verify that δ and, for that matter, ∂ are differentials. The

remarkable result is that these two definitions are equivalent. For a proof of this, see

[KD01, Chapter 5]. The theorem is the following:
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Theorem D.2 ([KD01, Theorem 5.9]). The cohomology of the chain complex (S∗(X;E), δ)

equals the cohomology H∗(X;Aρ), where ρ : π1X → Aut(A) is the homomorphism de-

termined by the local coefficient system p : E → X.

Both of these perspectives on cohomology with local coefficients will lend perspective

to this paper. We note here the rather intuitive fact that if A and B are systems of local

coefficients then a map f : A → B induces covariantly a map H∗(X,A) → H∗(X,B).

The map of cohomology induced by a map f : A → B of twisted coefficient systems

is written fcoeff. We will finish this section with an important example, which plays a

vital role in Section 4.

Example D.3. Let π : E → B be a fibration, and let M be the homotopy fiber at a

basepoint ∗ ∈ B. The homotopy fiber has the form

M = {(e, p) | e ∈ E and p is a path from π(e) to ∗}

and so π1(B, ∗) has a natural left action given by γ ·(e, p) = (e, γ◦p). This induces a left

action of π1(B, ∗) on the cohomology groups H i(M ;Z) for all i, and so H i(M ;Z) is a

(left) Z[π1(B, ∗)]-module. We will write the system of twisted coefficients corresponding

to H i(M ;Z) as Hi(M).

If the fibers of π : E → B are d-dimensional manifolds, an orientation is a choice

of an isomorphism or : H2d ∼−→ Z, where Z is the untwisted coefficient system which

corresponds to the trivial action of π1(B, ∗) on Z (i.e. the Z[π1(B, ∗)]-module given by

(
∑
σini) · n = (

∑
ni) · n).

Finally, recall that maps and tensor products of twisted coefficient systems corre-

spond to maps and tensors of Z[π1(B, ∗)]-modules, and so in particular the cup product

on cohomology induces a map

∪ : Hi ⊗Hj → Hi+j. (19)

This map is distinct from the cup product on cohomology with twisted coefficients, which

is the most natural map

∪ : H i(B;A)⊗Hj(B;B)→ H i+j(B;A⊗ B), (20)

which tensors the coefficients as would be intuitively expected. Since any map A → B
of twisted coefficient systems induces a map H∗(B;A)→ H∗(B;B), by composing (20)
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and the map induced by (19), we can get a map

H i(B;Hk)⊗Hj(B;Hl)→ H i+j(B;Hk ⊗Hl)→ H i+j(B;Hk+l). (21)

The map in (20) has the following properties:

• It is associative in the sense that the order of composition is unimportant in the

map involving three systems of local coefficients such as

H∗(X;A)⊗H∗(X;B)⊗H∗(X; C)→ H∗(X;A⊗ B ⊗ C)

• it is natural with respect to changing coefficients in the sense that, given maps

of coefficient systems f : A → C and g : B → D then the following diagram

commutes

H∗(X;A)⊗H∗(X; C) H∗(X;B)⊗H∗(X;D)

H∗(X;A⊗ C) H∗(X;B ⊗D)

fcoeff⊗gcoeff

∪ ∪
(f⊗g)coeff

• it is graded commutative in the sense that if H and H′ are twisted coefficient

systems and

τ : H⊗H′ → H′ ⊗H

is the map a⊗ b 7→ b⊗ a, then for α ∈ Hp(B;H⊗H′) and β ∈ Hq(B;H′ ⊗H),

we have that

α ∪ β = (−1)pqτcoeff(β ∪ α)

E The Serre Spectral Sequence

In this section we will introduce the notion of a spectral sequence, as derived from an

exact couple, and then give as a specific example the Serre spectral sequence. We will

introduce the derivation for the spectral sequence of a filtered topological space, follow-

ing [Hat04]. For a more in-depth treatment of spectral sequences and their derivation,

we direct the reader to [Gal16].

We will begin with the notion of an exact couple and then, following [Hat04], will

give an example.

Definition E.1. An exact couple consists of abelian groups A and B, and maps i :

A → A, j : A → E and k : E → A such that the following triangle is exact at each of
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its three corners
A A

E

i

jk

We can define a map d = j ◦ k : A→ A and thereby define a derived couple.

Definition E.2. The derived couple of the exact couple given above consists of abelian

groups A′ = i(A) ⊂ (A) and B′ the homology of E with respect to d, and maps i′ = i|A′,
j′ : A′ → E ′ defined by j′(i(a)) = [ja] and k′ : E ′ → A′ given by k′[e] = k(e) which

form the following commutative triangle

A′ A′

E ′

i′

j′k′

.

Checking that the maps j′ and k′ are well-defined is a simple exercise of diagram

chasing, as is proving the following lemma.

Lemma E.3. The derived couple of an exact couple is exact.

This gives us a sequence of abelian groups E,E ′, E ′′, ... which may or may not

stabilize. This sequence, along with the differentials d, d′, d′′, ... is called a spectral

sequence. This is generally formulated as a sequences of pages Er with differentials dr :

Er → Er such that d2
r = 0. In this sense the spectral sequences is a more complicated

(and correspondingly more powerful) analogue to the long exact sequence. Just like

long exact sequences are used to express relationships between (co)homology groups

of different spaces, spectral sequences are powerful tools for relating the cohomology

groups of more complicated structures for which a long exact sequence is insufficient.

For example, the Adams spectral sequence is used for computing stable homotopy

groups, the Leray spectral sequence for sheaf cohomology, and the Grothendieck spectral

sequence is useful for computing the composition of derived functors. The Serre spectral

sequence, which we are most interested in, is useful for expressing the relationship

between the (co)homology groups of spaces in a fiber bundle.

In a spectral sequence, the groups Er are typically expressed as a direct sum of

countably many groups which are indexed by Z2. Because of that, Er is usually drawn

over R2 with a group at each lattice-point of Z2. We call Er the rth page of the spectral

sequence, where the (p, q)th direct summand of Er is written Er
p,q.
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Differentials are also expressed in terms of the summands. Specifically,

dr : Er
p,q → Er

p−r,q+r−1

so one can tell the page by the direction of the differentials.

Typically, for a spectral sequence to be useful, for each (p, q) there should be some

n ∈ N such that Em
p,q = En

p,q if m ≥ n. That is, Ek
p,q should stabilize after large enough

k. The page with only stable entries is called the infinity page, and is written E∞p,q. In

some cases, the infinity page corresponds to an actual page Er. In others, the infinity

page is the limit page as r goes to infinity (hence the name). The relationship on which

the spectral sequence sheds light is typically expressed by giving the formula for Ek
p,q

for some k and then giving the (p, q)th diagonal on the infinity page. For example, the

Serre spectral sequence for homology is written

E2
p,q = Hp(B,Hq(F ))⇒ Hp+q(E)

while the sequence for cohomology is written

Ep,q
2 = Hp(B,Hq(F ))⇒ Hp+q(E)

(note the change of the subscripts and superscripts), where E → B is a fiber bundle

with fiber F . What is meant by the notation is that there exists a spectral sequence

such that the 2nd page is given by the formula on the left-hand side, and such that⊕
a+b=p+q

E∞a,b = Hp+q(E).

Just as in the case of results about long exact sequences, despite the amazing power

of spectral sequences the differentials are, in general, unknown and very difficult to

understand. In the instances which we use the Serre spectral sequence, the pages

have enough trivial entries (i.e. enough (p, q) such that, for example, E2
p,q = 0) that

the calculations become quite straightforward and virtually no information about the

nature of the differentials is necessary.

In the remainder of this section we will construct the exact couple which gives rise to

the Serre spectral sequence, and then give the main theorem which shows its properties.

We will then give some examples to illustrate its power and diversity. There is a version

of the Serre spectral sequence for both homology and cohomology; since we are working

only with cohomology in this document we will only introduce the theorem with respect
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to cohomology. The version for homology is very similar; the interested reader can read,

for example, in [Hat04].

In order to construct the exact couple, we must first introduce the idea of a filtered

topological space.

Definition E.4. A filtration of a topological space X is a collection of subspaces {Xα ⊂
X}α∈I such that I is a totally ordered set, and if α < β then Xα ⊂ Xβ. If X has a

filtration, then X is a filtered topological space.

Examples of filtered topological spaces are CW-complexes, where the filtration is

given by the skeleta, as well as simplicial copmlexes. Also, given a continuous map

f : X → R there exists a natural filtration Xα = {f−1(β) | β ≤ α}.
Now consider a fiber bundle X → B with fiber F and B a CW-complex. Then B

has a natural filtration given by the skeleta of B. We write Bi for the i-skeleton of B,

and we can define a filtration for X, given by Xi = π−1(Bi). For each i, we can take

the long exact sequence associated to the pair (Xi+1, Xi), which is

· · · → Hn(Xi+1, Xi)→ Hn(Xi+1)→ Hn(Xi)→ Hn+1(Xi+1, Xi)→ · · · .

By carefully arranging this long exact sequence for each pair (Xi, Xi−1), we can fit them

together neatly in a staircase diagram

Hn−1(Xi) Hn(Xi+1, Xi) Hn(Xi+1) Hn+1(Xi+2, Xi+1) Hn+1(Xi+2)

Hn−1(Xi−1) Hn(Xi, Xi−1) Hn(Xi) Hn+1(Xi+1, Xi) Hn+1(Xi+1)

Hn−1(Xi−2) Hn(Xi−1, Xi−2) Hn(Xi−1) Hn+1(Xi, Xi−1) Hn+1(Xi)

where the red indicates the long exact sequence for the pair (Xi+1, Xi). A staircase

diagram as given above determines an exact couple by letting A be the direct sum of all

the absolute cohomology groups Hn(Xi) and letting E be the the direct sum of all the

relative cohomology groups Hn(Xi+1, Xi). The maps i, j and k which form the exact

couple are the maps forming the long exact sequences in the staircase diagram.

The rather remarkable result is that the spectral sequence derived from this exact

couple relates the cohomology of X,B and F in the following way:
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Theorem E.5 (Convergence theorem of the Serre spectral sequence for cohomology).

Let X → B be a fibration with fiber F such that B is path connected, and let G be

an abelian group. If π1(B) acts trivially on H∗(F ;G), then there is a spectral sequence

{Ep,q
r , dr}, as defined above, such that:

(a) Ep,q
2 = Hp(B;Hq(F ;G))

(b)
⊕

p+q=n

Ep,q
∞
∼= Hn(X;Z)

(c) dr : Ep,q
r → E

p−(r+1),q+r
r where Ep,q

r+1 is the homology of Ep,q
r with respect to dr.

(d) stable terms Ep,n−p
∞ are isomorphic to the successive quotients F n

p /F
n
p−1 with re-

spect to a filtration of H∗(X)

The filtration referred to in (d) is given by

H∗(X;Z) = · · · = F 0H∗(X;Z) ⊃ F 1H∗(X;Z) ⊃ · · ·

where F iH∗(X;Z) := ker(H∗(X;Z) → H∗(Xi−1;Z)). We would like to give a few

examples which will give the reader an idea of how the spectral sequence might be

used.

Example E.6. We show that if Y is weakly contractible, then H∗(X × Y ;G) ∼=
H∗(X;G). This is not difficult to verify via the Künneth theorem, but we include

the example nonetheless to give the reader some intuition on how the spectral sequence

operates.

Consider the trivial bundle X × Y → X with fiber Y . Using the formula from

Theorem E.5, we have Ep,q
2 = Hp(X;Hq(Y ;G)). Since Y is contractible, the E2-page

of the spectral sequence only has nontrivial groups if q = 0. This gives us a row of

nontrivial groups, namely Ep,0
2 = Hp(X;G).

The differentials from the E2-page onward are not horizontal, and so all the differen-

tials are trivial and we have that the E2-page is the E∞-page and thus Hp(X ×Y ;G) ∼=
Hp(X;G) = Hp(X;H0(Y ;G)), as desired.

Example E.7 (Products of spheres). In this example we will compute H∗(Sd×Sd+1;Z)

for all d. Note that Sd × Sd+1 fits into the trivial fiber bundle

Sd Sd × Sd+1

Sd+1.
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This gives us an E2 page with only four nontrivial entries, being E0,0
2 , E0,d

2 , Ed+1,0
2

and Ed+1,d
2 , all of which are Z. In this case, the E2 page is the E∞ page because

nowhere do the differentials map between any two of these four nontrivial entries. Thus

Hk(Sd × Sd+1) = Z if k = 0, d, d+ 1, 2d+ 1 and 0 otherwise.

There is an additional structure on the Serre spectral sequence for cohomology

which is extremely important. This is that it is multiplicative, in the sense that there

are bilinear maps

∪ : Ep,q
r ⊗ Ep′,q′

r → Ep+p′,q+q′

r

induced by the cup product on cohomology. The differential follows the Leibniz rule

with regards to this multiplication. This is very useful, as we will see here in Example

E.8.

Example E.8. This example is considerably more interesting than the previous two: we

will show the cup product structure of CP n, which cannot be done using exact sequences.

Recall that H i(CP n) = Z if i is even, i ≤ 2n, and 0 otherwise. We first start with the

fibration

S1 S2n+1

CP n

which gives us, by the formula from Theorem E.5, the only nontrivial rows are 0 and

1. The first two rows of the first quadrant have the form

Z 0 Z 0 · · · 0 Z
Z 0 Z 0 · · · 0 Z

where the only differentials which could be nonzero are of the form d2 : Ep,1
2 → Ep+2,0

2 ,

mapping Z→ Z. Since we know the cohomology of S2n+1 is Z if i = 0 or 2n+ 1, and 0

otherwise, each of these maps must be isomorphisms for 0 ≤ p ≤ 2n− 2 because taking

the homology of the E2-page with respect to d2 must leave nontrivial groups only in E0,0
3

and E2n,1
3 . This gives us the following image of the E2-page.

Z 0 Z 0 · · · Z 0 Z

Z 0 Z 0 · · · Z 0 Z

∼= ∼= ∼=

We will use the cup product structure on the spectral sequence to deduce the cup product

structure on CP n, whose cohomology groups lie on the bottom row of the diagram.
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First, take 1 ∈ E0,0
2 = H0(CP n;Z) and choose a generator a ∈ E0,1

2 = H0(CP n;Z).

Let x ∈ E2,0
2 = H2(CP n;Z) be the image of a under d2. Now consider xa ∈ E2,1

2 =

H2(CP n;Z) and note that by the Leibniz rule

d2(xa) = (d2x) · a+ x · (d2a).

Then d2x = d2(d2a) = 0 and d2a = x so

d2(xa) = (d2x) · a+ x · (d2a) = x2,

which generates E4,0
2 = H4(Cpn;Z). Likewise,

d2(x2a) = (d2x
2)a+ x2d2(a) = x3,

and so on. By continuing this process we deduce that

H∗(CP n;Z) = Z[x]/(x2n+1).

E.1 The Serre spectral sequence with twisted coefficients

We actually do not use the Serre spectral sequence as stated in Theorem E.5 in this

paper. Instead, we use a slightly more general version of the theorem using local

(or twisted) coefficients as defined in Appendix D. We will present a version of the

convergence theorem of the Serre spectral sequence using the local coefficient systems

Hi defined in Example D.3 from Appendix D. We remind the reader that we consider

a bundle π : E → B with fiber M .

Theorem E.9 (Convergence theorem with local coefficients, [McC00, Theorem 5.2]).

There exists a spectral sequence such that:

(a) Ep,q
2 = Hp(B;Hq(M)), and

(b) Ep,q
∞ = F pHp+q(E;Z)/F p+1Hp+q(E;Z)

where the F iH∗(E) are defined as above.

We note that, as stated in [Gri13, Theorem 3.2], the description of Ep,q
∞ is equivalent

to that of repeatedly taking subquotients using the differentials of the spectral sequence.

Since repeatedly taking subquotients results in a subquotient of the original group, there
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are subgroups Bp,q ⊂ Zp,q ⊂ Ep,q
2 such that

Ep,q
∞ = Zp,q/Bp,q.

Here we are using the notation in [Gri13] which, as noted there, is a slight abuse of

notation as Zp,q = ker(differentials out of the (p, q) terms) and Bp,q =image(differentials

into (p, q) terms).

There is an additional property which is very convenient with regards to the filtra-

tion, which is that the filtration of H∗(E;Z) given by

H∗(E;Z) = F 0H∗(E;Z) ⊃ F 1H∗(E;Z) ⊃ F 2H∗(E;Z) ⊃ · · ·

respects the cup product. That is, the cup product restricts to a map

F pH∗(E;Z)⊗ F qH∗(E;Z)→ F p+qH∗(E;Z).

We will finish here by making some comments on the cup product structure on the

Serre spectral sequence. The first is that the filtration of H∗(E;Z) given by

H∗(E;Z) = F 0H∗(E;Z) ⊃ F 1H∗(E;Z) ⊃ F 2H∗(E;Z) ⊃ · · ·

respects the cup product, i.e. the cup product restricts to a map

F pH∗(E;Z)⊗ F qH∗(E;Z)→ F p+qH∗(E;Z).

The second is that the product on the E2 page of the spectral sequence, with Ep,q
2 :=

Hp(B;Hq(M)), is the following composition of maps:

Hp(B;Hq(M))⊗Hp′(B;Hq′(M))→ Hp+p′(B;Hp(M)⊗Hq′(M))→ Hp+p′(B;Hq+q′(M)).

We described these in (21) from Appendix D, i.e. the first map is the cup product of

cohomology with twisted coefficients, given in (20), and the second is the map induced

by (19). These facts are used in the proof of Theorem 3.1.
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