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Introduction

In this document, we will define a sequence of abelian groups, written K0(R), K1(R) and
K2(R), which are called the K−groups of a ring R with unit, and which are algebraic
invariants of R. While there are well-defined higher K-groups, and even negative K−groups,
we will focus only on these three.

In Sections 1 and 2, we will give thoroughly ring-theoretic definitions of K0(R) and
K1(R) for any ring with unit. However, as its name suggests, algebriac K−theory has
many connections to topological K−theory, an extraordinary cohomology theory of compact
Hausdorff topological spaces. Our main goal in Section 3 will be to generalize the notion of
K0(R) and K1(R) from rings to arbitrary categories with exact sequences. Then in Section
4 we will expose the link between algebraic and topological K−theory by looking at K0(R)
of the ring of continuous R− or C−valued maps on a topological space.

We will end our analysis of algebraic K−theory in Section 5 by giving a definition of
K2(R) for an arbitrary ring with unit, and showing it to be both functorial in R and abelian.

This exposition closely follows the book Algebraic K-Theory and its Applications, by
Jonathan Rosenberg [2], except for Section 4 which draws somewhat from Allen Hatcher’s
(yet unfinished) book Vector Bundles and K-Theory [1].

1 The Functor K0

Let R be a ring. Unless otherwise specified, throughout this document we will use the
convention that R refers to a ring with unit, and that I refers to a ring without unit. All
ring homomorphisms will be unit-preserving, the word “module” will refer to a left-module,
and all modules will be assumed to be finitely generated.

We assume the reader is familiar with elementary homological algebra, in particular
projective and injective modules and resolutions, and homology of chain complexes.

Then let R be a ring, and let Proj(R) be the set of finitely generated, projective
R−modules up to isomorphisms. Recall that a finitely generated R−module is projective iff
it is a direct summand of Rn for some n ∈ N. Also, if P1 and P2 are projective R−modules
such that P1⊕Q1

∼= Rn and P2⊕Q2
∼= Rm then P1⊕P2 is a projective R−module, because

by canonical isomorphism,

(P1 ⊕ P2)⊕ (Q1 ⊕Q2) ∼= (P1 ⊕Q1)⊕ (P2 ⊕Q2) ∼= Rm+n.

Furthermore, 0 ⊕ R ∼= R, so 0 is projective, the ⊕ operation is (canonically) associative,
and ⊕ is a commutative operation because by canonical isomorphism, P1 ⊕ P2

∼= P2 ⊕ P1.
Thus, aside from being a set, Proj(R) is a commutative semigroup under the operation ⊕
and with the identity element the zero module.

Proposition 1.1. Let S be a commutative semigroup with unit 0. Then there exists a
unique abelian group G(S) and a canonical map S ↪−→ G(S) which is universal with respect
to semigroup homomorphisms φ : S −→ H, where H is a group.
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Proof. Define G(S) to be the free abelian group on elements of S, modulo the relation that,
for a, b, c ∈ S, a + b = c in G(S) iff a + b = c in S. Our canonical map is the obvious
inclusion S ↪−→ G(S). Then for any group H, a semigroup homomorphism φ : S −→ H can
be uniquely lifted to a group homomorphism φ′ : G(S) −→ H by mapping s−1 7→ φ(s)−1

for all s ∈ S.
Uniqueness comes immediately because G(S) is universal.

The group G(S) is often called the Grothendieck group or the group completion
of S. [2]

There is an alternate, slightly more concrete construction of G(S), which is similar to
the construction of the field of fractions of an integral domain. In this case, we construct an
abelian group G by taking formal differences of elements of S with the addition operation
[r1 − s1] + [r2 − s2] = [(r1 + r2)− (s1 + s2)], and saying that r1 − s1 ∼ r2 − s2 if, for some
t ∈ S, r1 + s2 + t = s1 + r2 + t. In this construction, the identity element is the class [r− r],
for any r ∈ S, because s− t ∼ (s+ r)− (t+ r) ∼ (r + s)− (r + t) for all s, t ∈ S.

To show that these alternate constructions of G(S) are indeed equivalent, define the map
between them given by [r − s] 7→ [r] − [s]. This map is well-defined because if [r1 − s1] =
[r2 − s2] then for some t ∈ S, r1 + s2 + t = r2 + s1 + t. Thus

[r1]− [s1] + [t] = ([r1] + [s2] + [t])− [s2]− [s1] = ([r2] + [s1] + [t])− [s1] = [r2]− [s2] + [t],

which gives that [r1] − [s1] = [r2] − [s2]. Finally, since [r − 0] + [s − 0] = [(r + s) − 0], our
map sends [r − 0] 7→ [r], and is clearly an isomorphism.

With these definitions, we can now give the following definition for K0(R).

Definition 1.1. Let R be a ring with unit. Then define K0(R) to be the abelian group
G(Proj(R)), the group completion of Proj(R).

The construction of K0 gives us that K0(R) is functorial in R, because a ring homomor-
phism ϕ : R → S induces a map of projective modules P 7→ S ⊗ϕ P , which is considered
as a left S-module. Because tensor products commute with direct sums, we have that
(P1 ⊕ P2) 7→ (P1 ⊕ P2) ⊗ϕ S ∼= (P1 ⊗ϕ S) ⊕ (P2 ⊗ϕ S). So ϕ induces a map of semigroups
Proj(R) → Proj(S), which induces a map Proj(R) → G(Proj(S)), and finally, by the
universal property of G(Proj(R)) = K0(R), induces a unique map ϕ∗ : K0(R)→ K0(S).

With that in mind, ifR is a ring with unit, then there exists a unique ring homomorphism
ι : Z→ R which sends 1 ∈ Z to the unit in R. This induces a map ι∗ : K0(Z)→ K0(R).

Definition 1.2. The reduced K0−group of R is the quotient K̃0(R) := K0(R)/ι∗(K0(Z))

In a sense, the reduced K0−group of R gives the “nonobvious” parts of K0(R) [2], in
an analogous way that the reduced homology of a topological space gives the “nonobvious”
information about the structure of a space by omitting the information corresponding to
the homology of a single point. We would expect that in some uninteresting cases, K̃0(R)
would vanish, in an analogous fashion to contractible topological spaces.

Proposition 1.2. If R is a PID, then K0(R) ∼= Z. Furthermore, we have that the map
ι∗ : K0(Z) ∼= Z→ K0(R) is an isomorphism, and thus K̃0(R) vanishes.

Proof. It is a well-known fact that if R is a PID, then any projective module over R has a
well-defined rank, and any two projective modules of the same rank are isomorphic. Thus
Proj(R) ∼= N, and so G(Proj(R)) ∼= G(N) ∼= Z.
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Then under the map ι : Z → R, Zn 7→ R ⊗ι Zn ∼= Rn, and so ι preserves rank in the
induced map Proj(Z)→ Proj(R). Thus the induced map ι∗ : Z→ Z maps n 7→ n, and ι∗
is an isomorphism, as desired.

In analogue to topological K-theory, K0(R) has the additional structure of a ring if
R is commutative. In this case, any (left) R−module is also a right R−module, and so
it makes sense to think of the tensor product P ⊗R Q of two projective R−modules P
and Q. Additionally, if P and Q are finitely generated projective R−modules such that
P ⊕ P ′ ∼= Q⊕Q′ ∼= Rn for some n, then

(P ⊗R Q)⊕ ((P ⊗Q′)⊕ (P ′)n) =

P ⊗R (Q⊕Q′)⊕ P ′n = P ⊗R Rn ⊕ P ′n = Pn ⊕ P ′n = (P ⊕ P ′)n = Rn
2
,

and so P ⊗R Q is also projective. Since P ⊗R Q is also finitely generated, and ⊗R is well-
defined on isomorphism classes of projective modules, we have that Proj(R) is closed under
⊗R, the multiplication operation. Then because P ⊗R Q ∼= Q ⊗R P , when we construct
K0(R) using the construction from Proposition 1.1 and require that [P ]⊗(−[Q]) = −[P⊗Q]
in K0(R), we have that K0(R) is a commutative ring. Furthermore, since R ∈ Proj(R)
satisfying

R⊗R P ∼= P ⊗R R ∼= P

for all P ∈ Proj(R), K0(R) is a commutative ring with unit [R].

1.1 Alternate Definition of K0 with Idempotent Matrices

There’s a final construction of K0(R) which will be a useful way to think of K0(R) in certain
situations, and which will be referenced in both the definition of K1(R) and K2(R). This
construction comes by considering n× n matrices with coefficients in R.

In particular, any projective R−module P (such that P ⊕ Q ∼= Rn for some n) can be
thought of as the idempotent matrix MP corresponding to the projection Rn ∼= P ⊕Q� P .
And if P1

∼= P2 are two isomorphic, projective R − modules, the corresponding matrices
MP1 and MP2 only differ by a “change of basis” (of course, the term “basis” is not always
well-defined for an arbitrary ring) or, in other words, conjugation by some invertible n× n
matrix.

Using this correspondence we can actually identify Proj(R) with the set of idempotent
matrices with coefficients in R, up to conjugation by invertible matrices. To that end, we
have the following definitions and results:

Definition 1.3. Let GL(n,R) be the group of invertible n × n matrices with coefficients

in R. We can embed GL(n,R) into GL(n+ 1, R) by mapping any matrix M 7→
(
M 0
0 1

)
,

for M ∈ GL(n,R). Of course, this embedding preserves invertability of M . This gives us a
directed system

· · · ↪−→ GL(n− 1, R) ↪−→ GL(n,R) ↪−→ GL(n+ 1, R) ↪−→ · · ·

and we let GL(R) be the direct limit of this directed system. Alternatively, GL(R) is the
infinite direct sum

⊕
n∈N

GL(n,R), where each M is identified with its image under all the

embedding maps.
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Definition 1.4. In an analogous manner to Definition 1.3, we can define M(n,R) to be
the set of n × n matrices of R, and we can embed M(n,R) into M(n + 1, R) by the map

M 7→
(
M 0
0 0

)
. As before, this gives us a directed system, and we let M(R) be the direct

limit of that system.
Finally, let Idem(R) be the set of all idempotent matrices in M(R).

Note that any matrix in both GL(R) and M(R) can be considered as a finite matrix.
Also, note that GL(R) acts on Idem(R) by conjugation. Now, with these definitions, we
can give the final characterization of K0(R), as follows:

Theorem 1.1. (Rosenberg, Theorem 1.2.3) For any ring R, Proj(R) may be identified
with the set of conjugation orbits of GL(R) on Idem(R). K0(R) is the Grothendieck group
of this semigroup.

This result is not central to the main goal of this paper, and is included only to give
intuition, so we will omit the proof. We invite the curious reader to read the proof of Lemma
1.2.1 and Theorem 1.2.3 of [2].

Example 1.1. Theorem 1.1 immediately gives that K0(R) is isomorphic to K0(Mn(R))
for all n, because via the construction of the groups M(R) and M(Mn(R)) above, M(R) ∼=
M(Mn(R)).

2 The Functor K1

We will now proceed to define K1(R). To do so, we will make use of Definitions 1.3 and
1.4, which gave us GL(R) and M(R). The definition of both K1(R) and K2(R) make use
of the same structure that Theorem 1.1 used to give a definition of K0(R). We will only
need one additional definition of a subgroup of M(R) in order to define K1(R).

Definition 2.1. We will call a matrix E ∈ M(n,R) elementary if it has 1′s on the
diagonal and at most one nonzero entry off the diagonal. If Eij = a ∈ R is the nonzero,
off-diagonal entry of E, then we will write E as eij(a) (the identity matrix is simply denoted
e). Then let E(n,R) be the subgroup of M(n,R) generated by these matrices. Note that

there is a natural embedding E(n,R) ↪−→ E(n+ 1, R) which, maps eij(a) 7→
(
eij(a) 0

0 1

)
.

As before, this gives us a directed system. Let E(R) be the direct limit of this system,
and call E(R) the subgroup of elementary matrices.

Remark: E(R) contains matrices which are not of the form eij(a), so calling E(R) the
subgroup of elementary matrices is, admittedly, a slight abuse of terminology.

We will end up definining K1(R) to be the quotient GL(R)/E(R), but to do so we need
first to cover some more ground. Namely, we need to prove that E(R) is normal in GL(R).
In order to do so, we will prove the result that [GL(R), GL(R)] = [E(R), E(R)] = E(R),
which will not only give us that E(R) is normal, but that E(R) is perfect.

We begin with a lemma:

Lemma 2.1. Let M ∈ GL(R) be upper-triangular. Then M ∈ E(R)
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Proof. Here we consider M as an n × n matrix, for some n, as a representative of its
equivalence class in GL(R). Note that for all i, j such that 1 ≤ i, j ≤ n, the matrix
eij(Mij) ∈ E(R). Furthermore, we can write

M = en−1n(Mn−1n) · · · e2n(M2n) · · · e23(M23)e1n(M1n) · · · e13(M13)e12(M12). (1)

So M is a product of elementary matrices, and thus M ∈ E(R). This also covers the case in
which M is lower-triangular, because we can do the construction above for MT , and then
the transpose of Equation 1 gives us our decomposition of M in elementary matrices.

Corollary 2.1.1. Let A ∈ GL(n,R). Then

(
A 0
0 A−1

)
∈ E(2n,R).

Proof. Note that(
A 0
0 A−1

)
=

(
1 A
0 1

)(
1 0

−A−1 1

)(
1 A
0 1

)(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
.

The result follows because each of the matrices on the right-hand side is either upper or
lower triangular, and thus in E(R) by Lemma 2.1.

Proposition 2.1 (Whitehead’s Lemma). Let R be a ring. Then

[GL(R), GL(R)] = [E(R), E(R)] = E(R).

Proof. It is a straightforward fact to check that eik(ab) = eij(a)ejk(b)eij(a)−1ejk(b)
−1 as

long as i, j and k are distinct. Thus any elementary matrix eik(a) is the commutator
[eij(a), ejk(1)], when j 6= i, k, and so every generator of E(R) is the commutator of two
other generators. So E(R) ⊆ [E(R), E(R)]. By definition, [E(R), E(R)] ⊆ E(R), and so
E(R) = [E(R), E(R)] (i.e. E(R) is perfect).

Now, note that [E(R), E(R)] ⊆ [GL(R), GL(R)] because E(R) ⊆ GL(R). To show
the other inclusion, let A,B ∈ GL(n,R), and consider the embedding of ABA−1B−1 into

GL(2n,R) via ABA−1B−1 7→
(
ABA−1B−1 0

0 1n

)
, and note that:(

ABA−1B−1 0
0 1n

)
=

(
AB 0
0 B−1A−1

)(
A−1 0

0 A

)(
B−1 0

0 B

)
.

Corollary 2.1.1 gives us that each matrix on the right-hand side lies in E(2n,R), and so
ABA−1B−1 ∈ E(R), as desired.

Because E(R) = [GL(R), GL(R)], E(R) is normal in GL(R), so it makes sense to
take the quotient GL(R)/E(R). Also, since [GL(R), GL(R)] = E(R), GL(R)/E(R) is
the maximal abelian quotient GL(R)ab of GL(R), or the abelianization of GL(R). With
Proposition 2.1 under our belts, we are prepared to give a definition of K1(R).

Definition 2.2. Let R be a ring (with unit). We define K1(R) := GL(R)/E(R).

As stated before, one way to think of K1(R) is as the abelianization of GL(R). Another
way to think of K1(R) is as a quotient of GL(R) by the relation that M1 ∼ M2 if M2 can
be produced from M1 by multiplication from elementary matrices. This is similar to an
equivalence via row-reduced echelon form, depending on the ring, because left multiplication
by eij(a) is the familiar row-operation of adding a times the jth row to the ith row.

As before with K0(R), K1 is a functor from rings to abelian groups, because any (unit-
preserving) map ϕ : R → S induces a map GL(R)→ GL(S) and E(R)→ E(S), giving us
a map GL(R)/E(R)→ GL(S)/E(S).
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3 K0 and K1 of a Category with Exact Sequences

We have thus far given definitions of both K0 and K1 in ring-theoretic terms. Unfortunately,
our definitions do not readily generalize to other settings in any obvious way. We would like
to think of these groups in a slightly more general setting, in particular because we would
like to show the connection between algebraic and topological K−theory.

The goal of this section is to lay the groundwork for a suitable generalization of K0

and K1 to categories with exact sequences. It will be somewhat straightforward to recover
from this generalization our original definitions of K0(R) and K1(R) of a ring R with
unit. However, the new structure will allow us to make the connection between algebraic
K−theory and topological K−theory. By choosing the right category, we will be able to
recover K0(X), the 0th topological K−group of a compact Hausdorff topological space X.

Then in Section 4 we will prove a much stronger result, namely that there is an iso-
morphism of categories which relates algebraic K−theory and topological K−theory, and
which shows that algebraic K−theory is a suitable generalization of topological K−theory.

We will begin with the definition of a category with exact sequences, assuming that the
reader is familiar with both additive and abelian categories.

Definition 3.1. Let P be a category. We call P a category with exact sequences if P
is a full additive subcategory of an abelian category A, such that:

1. P is closed under extensions; i.e. if P1, P2 ∈ P and there exists a short exact sequence

0→ P1 → P → P2 → 0

in A, then P is also in P.

2. P has a small skeleton, i.e., P has a full subcategory P0 which is small, and such that
the inclusion P0 ↪−→ P is an equivalence of categories.

Some examples of such categories include the following:

1. Any small abelian category

2. ProjR, the category of finitely generated projective R−modules, is a category with
exact sequences. It is a full subcategory of the abelian category R−mod, and is
closed under extensions because every short exact sequence splits, and the direct sum
of two objects in ProjR is an object in ProjR. Its small skeleton the set of direct
summands of Rn for any n ∈ N, because any projective R−module is isomorphic to
a direct summand of Rn for some n, and so the inclusion of this subcategory into
ProjR is an equivalence of categories. But notice that ProjR is, in general, not an
abelian category since it’s not always the case that the cokernel of a map of projective
modules is again projective. For example, Proj Z is not abelian, because the cokernel

of Z 2→ Z is not an object in Proj Z.

3. If X is a compact Hausdorff space, then VectX, the category of vector bundles over X,
is also a category with exact sequences because VectX is isomorphic to ProjC(X),
where C(X) is the ring of continuous k−valued functions on X, for k = R or C.
Section 4 will be devoted to proving this isomorphism of categories.
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The purpose of defining categories with exact sequences is to define some more general
notion of K0 and K1 of a category. Recall that when we were defining K0 of a ring R, we
looked at Proj(R) and found that it was a semigroup under the direct sum operation. We
would like to define something analogous to that in the case of the category Proj(R) which
will produce an abelian group from any category with exact sequences.

In the case of ProjR, the statement that P = P1⊕P2 is equivalent to saying that there
exists a short exact sequence of the form:

0→ P1 → P → P2 → 0

or that P is an extension of P2 by P1. It is this notion for “addition” that we will use for
the more general case of defining K0 of some category.

Definition 3.2. Let P be a category with exact sequences with a small skeleton P0. We de-
fine K0(P) to be the free abelian group generated by the objects of P0, modulo the following
relations:

1. [P ] = [P ′] iff P ∼= P ′ in P, and

2. [P1] + [P2] = [P ] iff there exists a short exact sequence of the form:

0→ P1 → P → P2 → 0

in P.

Because every short exact sequence splits in Proj(R), we have changed nothing from
Definition 1.1, where we originally defined K0(R) for a ring R.

The definition for K1(P) is also similar to its previous analogue, although not quite as
obviously equal as that of K0(P).

Definition 3.3. Consider P as above. Then we define K1(P) to be the free abelian group
generated by elements of the form (P, α), where P ∈ P0 and α ∈ AutP , modulo the following
relations:

1. [(P, α)] + [(P, β)] = [(P, αβ)]

2. [(P1, α1)] + [(P2, α2)] = [(P, α)] iff there exists a commutative diagram in P of the
form:

0 −−−−→ P1
ι−−−−→ P

π−−−−→ P2 −−−−→ 0∥∥∥ yα1

yα yα2

∥∥∥
0 −−−−→ P1 −−−−→

ι
P −−−−→

π
P2 −−−−→ 0

with exact rows (note that the rows are identical).

Proposition 3.1. Let R be a ring with unit. Then:

1. K0(R) ∼= K0(Proj(R)), and the isomorphism is natural.

2. Similarly, by natural isomorphism, K1(R) ∼= K1(Proj(R)).
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Proof. (1) This isomorphism comes because, in each case, the definitions are identical. So
no proof is needed.

(2) We will construct an isomorphism between K1(Proj(R)) as follows: Note that
elements A ∈ GL(n,R) correspond bijectively to to automorphisms α ∈ Aut(Rn) via left-
multiplication. So we define a map ϕ : K1(R)→ K1(Proj(R)) given by [A] 7→ [(Rn, α)].

We’ll first check that this is well-defined. To do so, consider A,B ∈ GL(n,R) which
correspond to automorphisms α, β ∈ Aut(Rn). Then note that AB corresponds to αβ
(recall that we are considering A as an automorphism of Rn via left multiplication), and so

ϕ([A][B]) = ϕ([AB]) = [(Rn, αβ)] = [(Rn, α)] + [(Rn, β)] = ϕ([A]) + ϕ([B]). (2)

Also note that if [A] = [A′], then A and A′ differ only by elements of E(R). So to check
that ϕ is well-defined on equivalence classes, we need only check that if E ∈ E(R), then
ϕ(E) = 0 because of Equation 2 above.

To show that ϕ(E(R)) = 1, it suffices to show that ϕ maps the generators of E(R)
to 1. This comes immediately by part 2 of Definition 3.3 because we have the following
commutative diagram:

0 −−−−→ Rn−1
ι−−−−→ Rn

π−−−−→ R −−−−→ 0∥∥∥ ∥∥∥ eij(a)

y ∥∥∥ ∥∥∥
0 −−−−→ Rn−1 −−−−→

ι
Rn −−−−→

π
R −−−−→ 0

where eij(a) is a generator of E(R) which can be considered as an element of E(n,R) from
the direct limit. (By definition, any matrix in E(R) can be considered as a finite matrix.)
Since replacing the eij(a) arrow in the above diagram with an isomorphism also makes the
diagram commute, by part 2 of Definition 3.3, [(Rn, eij(a)] = [(Rn, IdRn)], and we have
that ϕ is well-defined.

We must now show that ϕ is an isomorphism, and we will begin with surjectivity. To
avoid confusion, we warn the reader that the group operation in K1(R) will be denoted
multiplicitavely, as K1(R) is the quotient of a matrix group, and that the operation in
K1(Proj(R)) will be denoted additively.

So to show surjectivity, consdier (P, α) ∈ K1(Proj(R)), where P ∈ Proj(R) such that
P ⊕ Q ∼= Rn. Then note that [(P, α)] + [(Q, idQ)] = [(P ⊕ Q,α ⊕ idQ)] = [(Rn, α ⊕ idQ)].
Thus [(P, α)] + [(Q, idQ)] lies in the image of ϕ. But [(Q, idQ)] is the identity element in
Proj(R), and so [(P, α)] lies in the image of ϕ, and ϕ surjects, as desired.

Finally, we show injectivity. To do so, suppose that ϕ([C]) = 0 for some C ∈ GL(n,R).
Then if γ is the automorphism of Rn corresponding to C, we have that [(Rn, γ)] lies in the
subgroup of K1(Proj(R)) generated by the relations from the definition of K1(R), namely:

[(P, α)] + [(P, β)] = [(P, αβ)] (3)

[(P, α)] = [(P1, α1)] + [(P2, α2)]. (4)

This gives, as it did earlier in this proof, that

[(P, α)] = [(P ⊕Q,α⊕ idQ)]

where P⊕Q ∼= Rn, and so we can assume that [(Rn, γ)] lies in the subgroup of K1(Proj(R))
generated by relations associated to finitely generated free modules.
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We take our finitely generated free modules to run over the set {Rn : n ∈ N}, and
identify each automorphism of a free module with its matrix. Then in the free abelian
group F generated by [A, j], with A ∈ GL(j, R) and j ∈ N, [C, n] lies in the subgroup
generated by

[A, j] + [B, j] = [BA, j], (5)

and
[A, j + k] = [A1, j] + [A2, k] (6)

Where (5) corresponds to the diagram

0 −−−−→ Rj −−−−→ Rj+k −−−−→ Rk −−−−→ 0∥∥∥ A1

y yA yA2

∥∥∥
0 −−−−→ Rj −−−−→ Rj+k −−−−→ Rk −−−−→ 0

and the relations in (5) and (6) come, respectively, from the relations in (3) and (4).
We can rewrite the relation in (5) as linear combinations of those of either:

[A, j] = [BAB−1, j], (7)

which corresponds to the case that k = 0 and allows for arbitrary changes of basis, or

[A1 ⊕A2, j + k] = [A1, j] + [A2, k], (8)

where A1⊕A2 denotes the matrix

(
A1 0
∗ A2

)
, and the relation from (8) corresponds to the

standard inclusion Rj ↪−→ Rj+k. The quotient of the free abelian group F by the subgroup
generated by the relations from (5) and (6) gives us the direct sum

⊕
j GL(j, R)ab. Then di-

viding by the subgroup generated by the relations from (7) and (8) gives us lim−→GL(j, R)ab =

GL(R)ab = K1(R), modulo the additional relation that

[(
A1 0
∗ A2

)]
=

[(
A1 0
0 A2

)]
be-

cause they both can satisfy the same commutative diagram from part 2 of Definition 3.3.
But elements of K1(R) already satisfy this relation, so [C] = 1 in K1(R), and ϕ injects,
giving us our desired result.

4 Equivalence of Categories and Topological K−Theory

In this section we will refer to Swan’s theorem, an important application of algebraic
K−theory to topological K−theory which shows that algebraic K−theory, as we have
defined it here, is a suitable generalization of topological K−theory. This is result, as refer-
enced in Section 3, is an isomorphism of categories between ProjR, the category of finitely
generated projective R−modules, and VectX, the category of vector bundles over X, a
compact Hausdorff topological space.

For the sake of completeness, we will give a brief introduction to vector bundles, along
with some examples, but assume that the reader is familiar with elementary topological
K−theory.

Definition 4.1. Let X be a compact Hausdorff topological space. A vector bundle over
X is a space E and a map E

p→ X such that for all x ∈ X:

1. p−1(x) ∼= V for some finite-dimensional vector space over R or C, and
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2. there exists some open set Ux 3 x such that p−1(Ux) ∼= Ux × V .

We usually say that E the total space, and X the base space.

Example 4.1. Let X = S2 and let E = {(x, y) ∈ X × R3 : y is in the tangent space of
S2 at x}. Let p : E → X be the projection map onto the first coordinate. Then for all
x ∈ X, p−1(x) is homeomorphic to the tangent plane of S2 at x, so p−1(x) ∼= R2. Also, for
any open set U ( S2 not containing all of S2, p−1(U) is homeomorphic to U × R2. Thus

E
p→ X is a vector bundle over X.

Example 4.2. Let X = S1. We could construct a vector bundle analogously to that in
Example 4.1 by just replacing S2 with S1, and R2 with R, and noticing that everything still
holds. However, there is a more interesting bundle of S1, called the Möbius bundle. The
total space of this bundle can be constructed by taking R× [0, 1] and identifying (0, x) with
(1,−x). Then taking the projection map to be projection onto the first coordinate, we have

a map E
p→ S1 such p−1(x) ∼= R for all x ∈ S1, and any open set U ( S1 not containing

S1 has the property that p−1(U) ∼= U × R. Thus E
p→ X is a vector bundle over X.

Definition 4.2. Let X be a compact Hausdorff topological space, and suppose that E
p→ X

is a vector bundle over X. A continuous section of p is a continuous map s : X → E
such that p ◦ s = idX .

Throughout the rest of this paper, we will use the terms section and continuous section
interchangeably.

Proposition 4.1. Let X be a compact Hausdorff topological space, and suppose that both
E1

p1→ X and E2
p2→ X are vector bundles over X. Let (E, p) be the pullback of

E2y
E1 −−−−→ X

Then (E, p) is a vector bundle over X, which we will denote, with slight abuse of notation,
as E1 ⊕ E2.

Proof. Let x ∈ X, and first note that p−1(x) ∼= p−11 (x)⊕p−12 (x) by properties of the pullback.
Since for some finite-dimensional vector spaces V1 and V2, p

−1
1 (x) ⊕ p−12 (x) ∼= V1 ⊕ V2, it

follows that p−1(x) ∼= V1 ⊕ V2.
Then let U1, U2 3 x be open sets inX such that p−11 (U1) ∼= U1×V1 and p−12 (U2) ∼= U2×V2,

and note that, for U = U1 ∩ U2, it still holds that p−11 (U) ∼= U × V1 and p−12 (U) ∼=
U × V2 because both Cn and Rn are homeomorphic to any connected open subset. Then
by properties of the pullback, p−1(U) ∼= U × (V1 ⊕ V2).

Thus E
p→ X is a vector bundle, as desired.

[Remark: Of course, E1 ⊕ E2 is not the actual direct sum of topological spaces E1 and
E2, because the direct sum of topological spaces is the disjoint union. However, on each fiber
of X, E1 ⊕ E2 is indeed the direct sum of vector spaces p−11 (x) and p−12 (x). Since we do
not generally use the direct sum notation in topology, it is fitting to employ it in this more
linear-algebraic sense.]
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Since vector bundles are closed under addition, the set of isomorphism classes of finite-
dimensional vector bundles over X, denoted Vect(X), forms a commutative semigroup

(E1 ⊕ E2
∼= E2 ⊕ E1 canonically), with unit the zero bundle, X × {∗} p→ X. Then as

in Section 1, we can take the group completion G(Vect(X)) of Vect(X), and we have an
abelian group. This is precisely the definition of the 0th topological K−group, as follows:

Definition 4.3. Let X be a compact Hausdorff topological space. Then the 0th topological
K−group of X, denoted K0

k(X) is G(Vectk(X)).

We are finally prepared to state the theorem to which this section is dedicated, and
show the connection between algebraic and topological K−theory.

Theorem 4.1 (Swan). Let F = R or C, and let X be a compact Hausdorff topological space.

Let R = CF(X) be the ring of continuous maps X → F. If E
p→ X is a F−vector bundle

over X, let
Γ(X,E) = {s : X → E : s is a section of p}

be the set of continuous sections of p. Note that Γ(X,E) is an R−module. Then Γ(X,E) is
finitely generated and projective over R, and every finitely generated projective module over
R arises (up to isomorphism) from this construction. Thus the map E 7→ Γ(X,E) induces
an isomorphism of categories from the category of vector bundles over X to the category of
finitely generated projective R−modules.

Proof. We will first show that Γ(X,E) is finitely generated. To that end, let E
p→ X be a

vector bundle over X and define Γ(X,E) as above. Then for each x ∈ X there exists some
open neighborhood Ux 3 x such that p−1(Ux) ∼= X × V for some finite-dimensional vector
space V . If V has dimension n, then the n sections ei : Ux → V which maps Ux 7→ ei,
the ith basis vector of V , generate the sections of the trivial bundle E

p→ Ux (the bundle

E
p→ X restricted to Ux).
Since X is compact, we can cover X with a finite collection of such open sets, indexed

Ui, and choose a partition of unity (fi) subordinate to the covering (i.e., for all i and all
x ∈ X, 0 ≤ fi(x) ≤ 1, fi(x) = 0 if x 6∈ Ui, and for all x ∈ X, Σ

i
fi(x) = 1).

Then we make a generating set for Γ(X,E) out of sections eij := fiej . Each of these
sections is supported in Ui and can extend to all of X by simply defining eij(x) = 0 if
x 6∈ Ui. By their construction, the eij ’s generate Γ(X,E) as an R−module, and thus
Γ(X,E) is finitely generated.

We will now show that Γ(X,E) is projective over R. To do this, choose generators sj
of Γ(X,E) (which could be the same ones we constructed above), and consider the trivial

bundle X × Fk πi→ X. We will construct a morphism to the total space, Fk ϕ→ E, defined
by:

(x, v1, ..., vk) 7→
k
Σ
j=1

vjsj(x).

Recall that the sj ’s span Γ(X,E), so they span p−1(x) for each x, and thus ϕ is surjective
on each fiber. We define a subbundle E′ of given by E′ = kerϕ, where each fiber E′x of
x ∈ X is given by kerϕx. This is a vector bundle because, kerφx is a finite-dimensional
vector space, and if E is trivial over U ⊆ X, then ϕ|π−1(U) : X × Fk → p−1(U) is a linear
map of vector spaces, and thus kerϕ|π−1(U)

∼= X × V for some finite-dimensional vector
space V . Thus E′ restricted to U is also the trivial bundle.
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Then note that, if E ⊕ E′ ∼= X × Fk, then

Γ(X,E)⊕ Γ(X,E′) ∼= Γ(X,X × Fk) ∼= Rk

and thus Γ(X,E) is projective (note that Γ(X,X × Fk) ∼= Rk because k continuous,
F−valued functions uniquely define a section of X, and each section of X is likewise given
by a k−tuple of continuous, F−valued functions).

We will do this by introducing an inner product on E. (Recall that an inner product can
be introduced on a vector bundle if X is paracompact, because each local trivialization is
equipped with an inner product, and these can all be patched together by using a partition
of unity [1]. Since X is compact, and thus paracompact, we have a well-defined metric on
all vector bundles of X, in particular on E and E′.)

Thus we have a metric on both E and on X × Fk which comes from the standard inner
product on Fk. Also, with respect to this metric ϕ has an adjoint, ϕ∗ : E → X × Fk such
that 〈ϕv,w〉 = 〈v, ϕ∗w〉. Since ϕ is surjective on each fiber of x ∈ X, ϕ∗ is injective, and
Im(ϕ∗) is the orthogonal complement of E′, E′⊥. Thus ϕ∗ is an isomorphism E ∼= E′⊥, and
it is a basic result in topological K−theory that E⊕E⊥ is the trivial bundle for any vector
bundle E over a paracompact Hausdorff topological space [1]. Thus E ⊕ E′ is trivial, and
Γ(X,E) is indeed projective.

Our next task is to show that every finitely generated projective module over R cor-
responds to Γ(X,E) of some vector bundle E over X. To that end, suppose that P is
a projective R−module such that P ⊕ Q ∼= Rn ∼= C(X,Fn). Then P is a collection of
continuous maps X → Fn, and so we can define a vector bundle E as

E = {(x, v1, ..., vn) ∈ X × Fn : s(x) = (v1, ..., vn) for some s ∈ P}.

We claim that if we define E
p→ X to be projection onto the first factor, E is a vector bundle

over X, where vector addition and scalar multiplication in each fiber is given precisely from
that of Fn.

Then our final item to check is local triviality. Let x ∈ X and choose elements e1, ..., er ∈
P such that e1(x), ..., er(x) are a basis for Ex = p−1(x) ⊆ Fn. Since these are vector-valued
functions, we will write ei = (ei1, e

i
2, ..., e

i
n). And since the functions e1(x), ..., er(x) are

linearly independent, we can choose 1 ≤ j1 < ... < jr ≤ n such that e = det(Mik) 6= 0 at x,
where Mik = (eijk). Then because P ⊕ Q ∼= Rn, we may choose a complementary basis of
elements fn−r, .., fn, and, as above, construct a nonzero determinant f using the f r. Then
both e and f are continuous (as each f r and er is continuous, and the determinant map is
also continuous), and so we have an open neighborhood Ux of x such that e, f 6= 0 on Ux.
Then if y ∈ Ux, the {ei(y)}i and {f i(y)} generate, respectively, rank−r and rank−(n − r)
free submodules of P and Q. Thus these span both P and Q, and we have that both P and
Q are trivial over U .

So we now have that, up to isomorphism, each projective R−module has the form
Γ(X,E) for some vector bundle E over X. Additionally, a map of sections Γ(X,E1) →
Γ(X,E2) restricts to a linear map on each fiber, defined by the images of the spanning
sections of the fiber. This is exactly a morphism of vector bundles, and thus the functor

which sends E 7→ Γ(X,E), and a morphism E1
ϕ→ E2 to Γ(X,E1)

φ∗→ Γ(X,E2), given by
s 7→ ϕ ◦ s, is bijective on objects as well as morphisms, and we have an isomorphism of
categories.

Corollary 4.1.1. Theorem 4.1 immediately gives us that K0(X) ∼= K0(R).
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5 The Functor K2

We will end our exposition of algebraic K−theory by defining K2(R) for any ring (with
unit) R. Intuitively speaking, the definition of K2(R) will show that K2(R) measures those
relations of elementary matrices of the form mij(a) (drawing from the definition of E(R)
in Section 2) which are “non-obvious,” in that they do not correspond exactly with the
relations of elements of E(R). This idea is somewhat similar to the definition of K1(R),
which showed that K1(R) measures the failure of general invertible matrices over R to be
expressed as a product of its elementary matrices (elements in E(R)).

With this in mind, we define the Steinberg group, as follows:

Definition 5.1. Recall from Section 2 that E(R) is generated by elementary matrices of
the form eij(a), where i 6= j and a ∈ R. Analogously, we define the matrix mij(a) to be the
n×n matrix with 1’s on the diagonal, a ∈ R on the i, j slot (thus i 6= j), and 0’s elsewhere.
We define the Steinberg group of order n, written St(n,R), to be the free group generated
by n × n matrices of the form mij(a), modulo the following relations (which the elements
eij(a) of E(R) satisfy as well):

1. mij(a)mij(b) = mij(a+ b)

2. mij(a)mkl(b) = mkl(b)mij(a), ifj 6= k and i 6= l

3. mij(a)mjk(b)mij(a)−1mjk(b)
−1 = mik(ab), if i, j and k are distinct.

4. mij(a)mjk(b)mij(a)−1mki(b)
−1 = mkj(−ba), if i, j and k are distinct.

As in the definitions of E(R), M(R) and GL(R), we can map St(n,R)→ St(n+ 1, R)

canonically (although not always injectively) via A 7→
(
A 0
0 1

)
, and we get from this a

directed system. The Steinberg group, written St(R), is the direct limit of this system.

It is obvious that there is a canonical projection map St(R) � E(R) which maps n× n
matrices mij(a) 7→ eij(a). What is not obvious a priori is that the projection is not an
isomorphism in general. Indeed, the generators of E(R) satisfy all the relations stated in
Definition 5.1. But depending on the ring, they may satisfy more relations which cannot
be derived from the four in the definition of St(R) because E(R) ≤ GL(R). Then K2(R)
is a sort of measure of whether or not this occurs, in the sense that if K2(R) is trivial,
then the projection is indeed an isomorphism, and if not, then K2(R) is the subgroup of
St(R) generated by the relations which the generators of E(R) satisfy, and which cannot
be derived from the four in the definition. Thus, naturally, we have the following definition
of K2(R):

Definition 5.2. Let R be a ring with unit. We define K2(R) to be the kernel of the
canonical projection map St(R) � E(R).

Note that a ring homomorphism ϕ : R → S induces maps ϕ∗ : E(R) → E(S) and
ϕ∗ : St(R) → St(S) via eij(a) 7→ eij(ϕ(a)) and mij(a) 7→ mij(ϕ(a)), respectively. This
gives that the diagram

St(R)
ϕ∗−−−−→ St(S)y y

E(R) −−−−→
ϕ∗

E(S)

13



commutes, because, along the top, mij(a) 7→ mij(ϕ(a)) 7→ eij(ϕ(a)), and, along the bot-
tom, mij(a) 7→ eij(a) 7→ eij(ϕ(a)). Thus under the induced map ϕ∗ : St(R) → St(S),
ϕ∗(ker(St(R) → E(R)) ⊆ (ker(St(S) → E(S)) and we have that ϕ induces a map
ϕ∗ : K2(R) → K2(S). So just as in the case of K0(R) and K1(R), K2(R) is functorial
in R.

However, it’s not at all clear that K2(R) is abelian, which we would like it to be, as
both K0(R) and K1(R) are abelian, as well as the topological K−groups which this theory
generalizes. It is simply defined as the kernel of a group homomorphism between to non-
abelian groups, and so a priori there is no reason why it should be abelian. We will dedicate
the remainder of this section to proving that K2(R) is indeed abelian. To do this, we will
need the following notion:

Definition 5.3. Let G1, G2, G be groups. An extension

e→ G1 → G→ G2 → e.

of G2 by G1 is central if the map G1 ↪−→ G is the inclusion of the center of G.

Our goal, then, for the rest of this section is to show that the short exact sequence

e→ K2(R)→ St(R)→ E(R)→ e (9)

is a central extension of E(R). Given that, it follows immediately that K2(R) is an abelian
group, just like its counterparts K1(R) and K0(R).

As our first step to proving that this extension is indeed central, we prove the following
technical lemma:

Lemma 5.1. Let R be a ring and n ∈ N such that n ≥ 3. Let N(n,R) be subgroup of
St(n,R) generated by all mij(a), a ∈ R, with i < j. Then ϕn restricted to this subgroup is
an isomorphism onto the upper-triangular subgroup of E(n,R). Thus K2(R) ∩ N(n,R) is
trivial.

Proof. Consider N(n,R) as defined above. Then let N1 be the subgroup of N(n,R) gener-
ated by m1j(a) such that 1 < j ≤ n. Note that N1 is abelian by relation 2 from Definition
5.1 (because 1 6= j), and that Rn−1 surjects onto N1 via the map:

(a2, a3, ..., an) 7→ m12(a2)m13(a3) · · ·m1n(an).

Then if ϕn is the projection map St(n,R) � E(n,R), ϕn maps N1 to the upper-triangular
matrices in E(R) whose off-diagonal, nonzero entries are all on the first row. Then under

the composition Rn−1 � N1
ϕn→ E(n,R), (a2, a3, ..., an) ∈ Rn−1 is mapped to the upper-

triangular matrix M in E(n,R) with M1j = aj and 0 elsewhere above the diagonal, and

Rn−1 � N1
ϕn→ E(n,R) is injective, giving that ϕn restricted to N1 is injective.

Then let N2 be the subgroup of St(n,R) generated by elements of the form mij(a) sith
i < j and i = 1 or 2. Then N2/N1 is generated by the cosets of elements of the form
m2j(a) with 2 < j ≤ n. By the same arguments as before, the group N ′2 generated by these
elements m2j(a), 2 < j, is also abelian and an injective image of Rn−2 via the map

(a3, a4, ..., an) 7→ e23(a3) · · · e2n(an),

where e23(a3) · · · e2n(an) = M is the upper-triangular matrix in E(R) with the nonzero
entries above the diagonal being M2j = aj , 3 ≤ j ≤ n. So ϕn is injective on N ′2, and thus
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ϕn is injective on N2, as any element in N2 can be given as a unique product of an element
of N1 and one of N ′2, and no nontrivial element of N1 the the inverse of an element in N ′2.
Repeating this process n times, we have that ϕn is injective on Nn = N(n,R), and thus
that ϕn maps N(n,R) isomorphically to the group of upper-triangular n× n matrices with
1’s on the diagonal and entries in R.

Thus K2(R) ∩N(n,R) is trivial for all n, and we have our result.

We are now ready to prove our main result of this section, namely:

Theorem 5.2. The extension from Equation 9 is central.

Proof. Let ϕ : St(R) � E(R) be the canonical projection map from Equation 9, and let
x ∈ Z(St(R)). Then ϕ(x) must commute with ϕ(y). Since ϕ surjects, that means that
ϕ(x) must commute with all y ∈ E(R). But E(R) has a trivial center since an n×n matrix
M can’t commute with each eij(1) unless M is diagonal and all the entries have the same
value. Since each matrix in E(R) can be thought of as an infinite matrix such that, after
some m ∈ N, the entries in the diagonal stabilize to 1’s, M must have all 1’s on the diagonal,
and thus M is the identity matrix in E(R), and φ(x) = e, and x ∈ ker(ϕ) = K2(R). Thus
Z(St(R)) ⊆ K2(R), as desired.

Now consider an elementm = mi1j1(a1) · · ·minjn(an) ∈ K2(R), with ei1j1(a1) · · · einjn(an) =
1 in E(R). Choose some N larger than all the i1, ..., in, j1, ..., jn, and note that for any l ≤ n,
k < N and a ∈ R, we have that:

mi1j1(a1)mkN (a)xi1j1(a1)
−1 =

{
mkN , k 6= j1

mi1N (a1a)mkN (a), k = j1

by our relations in Definition 5.1. Thus m normalizes the subgroup AN generated by the
mkN (a), with k < N and a ∈ R. Since K2(R) has a trivial intersection with AN by
Lemma 5.1, the restriction of ϕ to AN is injective. Since we have that for all y ∈ AN ,
ϕ(mym−1y−1) = ϕ(m)ϕ(y)ϕ(m−1)ϕ(y−1) = ϕ(y)ϕ(y−1) = 1, we get that mym−1y−1 must
be trivial.

Thusm communtes with anymkN (a) such thatN is larger than the indices i1, ..., in, j1, ..., jn.
Also, since mij(a)mjk(b)mij(a)−1mjk(b)

−1 = mik(ab) if i, j and k are distinct (relation 3
from Definition 5.1), these matrices generate St(R). Therefore m ∈ Z(St(R)), as desired,
and K1(R) = Z(St(R)), which gives our result

Corollary 5.2.1. K2(R) is an abelian group.

6 Conclusion

Our goal with this paper was to thoroughly define the three K−groups K0,K1 and K2

of a ring, and then to show it in sufficient generality such that the connection between
topological and algebraic K−theory would be clear. In doing this, we had to omit the
long exact sequence of a pair (R, I) of a ring and an ideal, higher K−groups, and negative
K−groups among other things. Given more time and space, these would have been my
next priority, after calculating a few good examples (in general, finding K−groups require
very nontrivial calculations).
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