
(Co)Homology Theory

Derek Sorensen

January 4, 2018

This document contains the proofs of the main theorems of an introductory course in algebraic
topology. They are intended for the student who is seeing this for the first time, and so the proofs
are given in substantial detail, with (hopefully) intuitive explanations. This will take on a more
algebraic approach, as this is what the author found most intuitive.

This is not intended to be a comprehensive treatment of simplicial and singular (co)homology
theories, but instead a highlight of the main theorems which are important for the subject. This
would be best used as a study guide, supplementary to Hatcher’s Algebraic Topology, Massey’s
Algebraic Topology: An Introduction, or any other book on the subject that the reader finds useful.

Good luck!

Note: These notes are still under construction! I’ll update the document as I write more. Sugges-
tions and corrections are welcome.

1 Homology

Most of the theorems that we’re going to include here prove that a certain tool can be used for
calculating homology groups of complicated spaces using exact sequences. Exact sequences are
to algebraic topology what integrals are to calculus. They are the principal tool for calculating
homology groups, and they are extraordinarily powerful.

1.1 Mayer-Vietoris Exact Sequence

Trying to calculate the singular homology of a topological space is virtually intractable. The only
space on which we can do that is the space with one point. (For the reader familiar with category
theory, this is because, in the category of topological spaces Top, the space {∗} is terminal.) We
need tools to calculate homology groups for more complicated spaces. One of the most powerful
tools of these is the Mayer-Vietoris exact sequence.

The statement of the sequence is very straightforward, and the sequence becomes useful immediately
in our quest to calculate homology groups of spaces that are not the one-point space.
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Theorem 1. Let X = A ∪ B be a topological space, where A,B are nonempty subsets of X such
that X is the union of the interiors of A and B. If A ∩ B has a nonempty interior, there exists a
long exact sequence of the form

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ · · · → H0(X)→ 0.

This result is actually very straightforward result of the so-called ”Snake lemma.” We ought to
mention that if A and B are chain complexes, a map of chain complexes ϕ : A → B is a collection
of maps ϕi : Ai → Bi for each i such that everything commutes, i.e. for every i, the following
diagram is commutative:

Ai Bi

Ai−1 Bi−1.

ϕi

∂Ai ∂Bi
ϕi−1

In the diagram above, the maps labeled ∂Ai and ∂Bi are the respective boundary maps of the chain
complexes A and B. What I claim here is that such a map induces a map of homologies. That
is, we get a collection of maps φi,∗ : Hi(A) → Hi(B). This follows straight away from the fact
that taking homology is a functor from the category of chain complexes to the category of abelian
groups. If that doesn’t make any sense to you, we’ll prove it right here for good measure.

Proposition 1.1. A map of chain complexes ϕ : A → B induces a map ϕi,∗ : Hi(A) → Hi(B).
Furthermore, the induced map of a composition is the composition of the induced maps, and the
induced map of the identity map is the identity.

Proof. We’re going to prove this by defining a the map ϕi,∗ using ϕi. This is done in the most
naive way possible, namely, for any equivalence class [a] ∈ Hi(A),

ϕi,∗([a]) = [ϕi(a)].

Now we need to show that this map is well-defined by first showing that ϕi(ker(∂Ai )) ⊂ ker(∂Bi )
(i.e., that ϕi sends a cycle to a cycle), and then showing that if a − b ∈ Im(∂Ai+1) (i.e., a − b is a
boundary, meaning that [a] = [b] under the homology quotient), then ϕi(a)−ϕi(b) is a boundary in
Bi. For convenience, we’re going to use the vocabulary of cycles and boundaries. We’re also going
to leave out the A and B superscripts in ∂Ai and ∂Bi , as it should be clear which one we mean each
time we refer to the differential.

So first, suppose that a ∈ Ai is a cycle. We want to show that ϕi(a) is also a cycle. Since the
diagram

Ai Bi

Ai−1 Bi−1

ϕi

∂i ∂i

ϕi−1

commutes, and by definition ∂(a) = 0, it follows that ∂ ◦ ϕi(a) = ϕi−1 ◦ ∂(a) = 0, and ϕi(a)
is a cycle. So we’re on the right track—now all we have to show is that ϕi,∗ is well-defined on
equivalence classes after the homology quotient.

To that end, suppose that [a] = [b] in Hi((A)). This means that a−b is a boundary in Ai. We want
to show that [ϕi(a)] = [ϕi(b)], which is the same as showing that ϕ(a−b) is a boundary in Bi. This
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comes pretty quickly—Since a− b is a boundary, there is some c ∈ Ai+1 such that ∂i+1(c) = a− b.
Since the diagram

c ∈ Ai+1 Bi+1

a− b ∈ Ai Bi

ϕi+1

∂i+1 ∂i+1

ϕi

commutes, we know that ∂ ◦ϕi+1(c) = ϕi(a− b), and so ϕi(a− b) has a preimage under ∂i+1. Thus
ϕi(a− b) is a boundary, as desired.

Now to show that the induced map of a composition of maps is the composition of the induced
maps, just replicate the arguments above, but try to extend it for commuting diagrams that look
like this:

Ai+1 Bi+1 Ci+1

Ai Bi Ci

Ai−1 Bi−1 Ci−1.

ϕi+1

∂

ψi+1

∂ ∂

ϕi

∂

ψi

∂ ∂

ϕi−1 ψi−1

One ought to take care to make sure this diagram commutes, but it should be readily visible. And
finally, the fact that the identity induces the identity should also be readily visible.

OK, now that we’ve established that a map of chain complexes descends to a map of homologies
for each degree, we can take a look at the Snake lemma. We ought to note here that this lemma
is standard, and that anyone who studies algebraic topology or homological algebra should know
this (not too difficult) proof.

Lemma 1.1 (The Snake Lemma.). Consider a short exact sequence of chain complexes

0→ A→ B → C → 0.

Then for each i > 0 there exists a map

Hi(C)→ Hi−1(A).

These maps, along with the induced maps on homology, give us a long exact sequence of the form

· · · → Hi(A)→ Hi(B)→ Hi(C)→ Hi−1(A)→ · · · → H0(C)

Proof. Let’s draw the full diagram corresponding to these maps of chain complexes.

0 Ai+1 Bi+1 Ci+1 0

0 Ai Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0.

∂ ∂ ∂

∂ ∂ ∂
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The main challenge is that we need to find a way to map the kernel of ∂ in Ci to the kernel of ∂
in Ai−1 (again, these two instances of ∂ refer to different maps). To find the map, take an element
c ∈ ker(∂) ⊆ Ci. Note that the rows of the diagram are exact (that’s what it means for the sequence
of chain complexes to be exact). So we can find a preimage of c, call it b, in Bi. Hitting b by ∂,
we get b′ ∈ Bi−1. The diagram commutes, and so the horizontal image of b′ is 0. By exactness, we
have a preimage of b′ in Ai−1. Call that a, and define the map of homology as

[c] 7→ [a].

Of course, we’re not done. We have to prove (1) that this map is well-defined. We then have to
prove exactness at each point in what we claimed in the lemma to be the long exact sequence.
This is an excellent exercise in diagram chasing. If the reader can’t readily verify that these facts,
she may need more practice in diagram chasing and, considering how much easier it is to diagram
chase on your own rather than reading it from some proof, I would be depriving the reader of a
much-needed exercise by providing the details here. If it is not hard for the reader to verify the
rest of this proof, then she doesn’t need to read the proof here anyway.

Great. Now that we have the Snake lemma established, all we need to do to prove the Mayer-
Vietoris sequence is to provide a suitable short exact sequence of chain complexes that will give us
what we want. (Before reading further, by looking at the Mayer-Vietoris sequence, can you guess
what it is?) We will write C(X) to be the singular chain complex of a given space X. The sequence
we want is the sequence of chain maps made up of maps of the form:

0→ Ci(A ∩B)
+−→ Ci(A)⊕ Ci(B)

−−→ Ci(X)→ 0. (1)

Here, the first nontrivial map, labeled by +, is the diagonal map (i.e. it sends δ 7→ (δ, δ)), and the
map labeled − is the natural subtraction map, which sends (δ, γ) 7→ δ − γ. Note that the + map
is injective (clearly), and that − is surjective.

The kernel of − consists of elements (δ, γ) such that δ − γ = 0 in Ci(X). Since C(X) is a free
abeliean group, δ− γ = 0 iff δ = γ. This can only happen if δ = γ is in both A and B, and thus in
their intersection, and we have that δ ∈ Ci(A ∩B). So (1) from above is indeed exact, just like we
wanted. And the fact that this short exact sequence gives rise to the long exact sequence that we
wanted in the first place comes by simply taking the homology of each group. What do you get?

1.2 Excision

Excision sounds scary, but it’s no big deal. There are two versions of the theorem. We will prove
that they are equivalent.

Excision is also extremely important. It doesn’t hold for homotopy groups, which is one of the
things that makes them so difficult to calculate. We don’t even know homotopy groups for most
spheres!
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1.3 Equivalence of Simplicial and Singular Homologies

1.4 Simplicial Approximation

1.5 Homology and the Fundamental Group

2 Cohomology

2.1 Ring Structure and the Cup Product

2.2 Universal Coefficient Theorem

2.3 Künneth Formula

2.4 Poincaré Duality

3 Additional Topics

3.1 Local Coefficients
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