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Abstract. We survey six popular blockchain consensus algorithms, show-
ing that the blockchain community does not have well-established theo-
retical foundations. In this paper, we consolidate and unify these foun-
dational notions, establishing high quality standards and exploring the
comparative relationship between foundations used on these different
algorithms. The framework established here is meant to be used by aca-
demic and industrial blockchain researchers as a foundation for the the-
ory of consensus.
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1 Introduction

Blockchain technology, as an academic discipline, is very much in its development
phases. New journals, such as Ledger and International Journal of Blockchains
and Cryptocurrencies, have emerged to make a space for academics to discuss
the economic, legal, social, mathematical, and computer scientific implications
of these technologies. To an academic mathematician entering the field, it is
immediately obvious that blockchain-related consensus algorithms are in urgent
need of both formalization and standardization. Since most blockchain consensus
algorithms come out of industry, these almost never make it through a peer-
review process. Instead, they appear on company websites, as white papers, or
simply on the ArXiv.

We see important drawbacks from this phenomenon. The first is that block-
chain scientists in general do not communicate with each other. While it can,
admittedly, be difficult to have research-sensitive conversations because of eco-
nomic interests, this phenomenon inhibits the field from achieving unity because
observations, definitions, techniques, and results end up being rediscovered by
each respective party. Not only does this waste time, but each party introduces
nuances, and thus more confusion. The second, perhaps a symptom of the first, is
that most blockchain consensus algorithms use their own seemingly ad hoc def-
initions of consensus, safety, liveness, finality, and their own, nuanced network
assumptions. At times these call distinct notions by the same name, or equiv-
alent notions by distinct names. For a scientist trying to compare blockchain



consensus algorithms, this lack of standardization and communication causes
undue confusion and wastes significant amounts of time in comparing author’s
ideas regarding these more basic notions in addition to the algorithms.

This paper seeks to fulfill two purposes. The first is to compare and contrast
the definitions, models, and network assumptions from several popular block-
chain consensus algorithms. We show how the notions relate and differ to give
motivation for our standardization and insights as to why comparison is so diffi-
cult and nearly always unfruitful. The second is to standardize these definitions
and notions, relating them back to the foundations of classical, pre-Nakamoto
literature on consensus. Our purpose here is not to give a survey of consensus,
nor to give readers a sense of existing consensus algorithms. Rather, our purpose
is to inform researchers who are either selecting a consensus algorithm for a new
blockchain or building a consensus algorithm of their own, what high-quality
foundations look like and why they must take them seriously.

In this paper, we explore six fundamental notions underlying consensus on a
blockchain, which are: Byzantine agreement, network assumptions, the adversar-
ial model, finality, safety, and liveness. For each of these notions, we demonstrate
the lack of unity and the ensuing problems with the following consensus algo-
rithms: Nakamoto’s consensus algorithm [16] run on BTC and ETH, PBFT [4],
Gosig [13], Best of Both Worlds (BoBW) [14], Ouroboros [12], and Honey Badger
BFT [15]. Realizing that we could not survey every popular consensus algorithm,
we chose to only survey from those that have published papers and that claim
to have proofs of both safety and liveness in the face of a Byzantine adversary.
Thus we neglect some popular algorithms such as Raft [6], which explicitly only
treats crash faults, and Tangaroa [5], which lacks a proofs altogether. As part
of this analysis we also propose standard definitions sufficiently general to apply
to any consensus algorithm on a blockchain or blockdag.

2 Related Work

There have been several efforts to give summaries, descriptions, or taxonomies
on different aspects of blockchain technology. While these are, in general, very
useful, each has their own goals, and none of these work exclusively within the
mathematical foundations of consensus like we do here.

For example, [23], [17], and [24] give surveys of consensus algorithms as they
exist within the blockchain world. These introduce concepts such as proof of
work or proof of stake, and give examples. We assume that our reader is familiar
with consensus algorithms used within industry. Instead of giving a survey of
the algorithms themselves, we survey their theoretical foundations.

Similarly, [20], [22], and [21] give surveys of consensus algorithms but do
so from a practical perspective, describing the technology itself or its perfor-
mance metrics. For example, [20] focuses on and analyzes the Stellar Consensus
Protocol and the Linux Foundation’s hyperledger product; [22] focuses on the
issue of scaling, contrasting proof-of-work algorithms with BFT replication; and
[21] gives an introduction to the technology surrounding Bitcoin, including con-



cepts such as double spending, transaction malleability (finality), mining, bond-
ing/unbonding, traffic analysis, and so on. The features of different consensus
algorithms mentioned in these articles, while important, do not strongly relate
to the topic that we treat of consistency in mathematical models, foundations,
and assumptions.

In [25], the authors propose a taxonomy with which one can understand and
compare consensus algorithms. In some ways, the purpose of this paper is similar
to ours. The standards we establish are meant to facilitate comparison. However,
we do so from the standpoint of fundamental, mathematical assumptions, while
[25] does so from a feature-oriented perspective. Furthermore, we seek to set
mathematical standards that blockchain scientists will adopt so that the con-
sensus algorithms produced within industry can be rationally compared to one
another. These standards do not yet exist, and without them it is extremely
difficult to perform any meaningful, mathematical comparison.

Perhaps the article closest in purpose and content to ours is [3], which ex-
plores blockchain consensus algorithms “in the wild.” The authors briefly touch
on definitions and assumptions related to safety, though they do not mention in
rigorous detail the other key concepts that we cover such as network assump-
tions, adversarial model, liveness, and finality. Furthermore, the definition given
for safety does not apply to consensus on blockdags such as [1] [2], [8], and
[19]. While they do criticize some consensus algorithms, such as Tangaroa [5],
as lacking in theoretical fondations, the authors neither propose standards nor
thoroughly explore the essential foundations of consensus.

The mathematical standards we propose tie consensus algorithms that have
emerged for the specific purpose of the blockchain to classical consensus algo-
rithms made for general distributed systems. In the process, we uniquely give a
survey of mathematical foundations to show the need for such standards to exist.
Our principal contribution is to propose standards that ground blockchain con-
sensus firmly in solid mathematical theory, making it more feasible to compare
consensus algorithms in terms of their network and adversarial models, finality
properties, and conditions for safety and liveness.

3 Byzantine Agreement

Every consensus algorithm for a practical blockchain tries to achieve Byzantine
agreement, which is to achieve safety, liveness, and finality under some specified
network assumptions and a given adversarial model. Byzantine agreement is the
core problem to be solved, and so should have a standard, constant definition
that we can all draw from. Surprisingly, only two of the algorithms we surveyed
explicitly stated a definition of Byzantine agreement, and those definitions that
were explicitly stated differed in nontrivial ways. The remaining algorithms ne-
glected to mention the problem in any formal way. We find this perplexing, as
one cannot know if a problem has been solved if there is no good definition to
begin with.



To illustrate our point, consider those two algorithms, BoBW[14] and Honey
Badger BFT[15], that actually stated definitions of Byzantine agreement. The
former, in Definition 3.1, defines Byzantine agreement to be a distributed pro-
tocol Π that satisfies validity, consistency, and p-termination. The latter, in
Appendix C, requires agreement, termination, and validity. In these definitions,
BoBW’s consistency corresponds to Honey Bader’s agreement, but both defini-
tions of termination and validity differ. Honey Badger’s definition of termination
corresponds to a quasi-combination of BoBW’s validity and p-termination, with-
out reference to any probability p. The notion of validity as defined in Honey
Badger isn’t even found in BoBW’s definitions.

The importance of having a clear objective in research cannot be understated.
We cannot achieve a goal we do not set. Even more troubling than inconsistent
definitions is no definition at all. Not only does this betray a lack of rigorous
thinking, but it can be actively deceptive. Since there was no rigorous problem
definition to begin with, these papers usually declare their algorithms to be
satisfactory if they meet some benchmark of safety and liveness that the authors
place, seemingly arbitrarily. From these kinds of arguments, it is never clear
if a given algorithm actually satisfies its purpose, since there was no concrete
purpose to begin with.

We reiterate that the problem of achieving Byzantine agreement on a block-
chain is simply to achieve safety, liveness, and finality under specified network
assumptions and a adversarial model. These five mentioned components, then,
must necessarily be standard notions if we are to claim to be after the same
problem.

In all of the definitions that follow, we follow convention and use N to refer to
the total number of members of consensus, and f to be the number of Byzantine
nodes, those nodes whose behavior can be arbitrary. As these notions do not
apply to Nakamoto consensus [16], where appropriate we specify the analogous
notions specific to that case. We call members of consensus validators.

4 Network Assumptions

We prefer a minimalist approach to network assumptions. While it is impossible
to guarantee consensus on a fully asynchronous network, it is possible to achieve
consensus under some mild assumptions [10]. The weakest of these, which we
see as the gold standard, is intermittent synchrony. A network is intermittently
synchronous, or ∆-intermittently synchronous, if any interval of time can be
extended to one during which the average message delay is at most ∆ (for a
more technical definition, see the Appendix of [15] ).

Of the consensus algorithms we review in this paper, only Honey Badger has
proofs based on intermittent synchrony. The rest assume variants or special cases
of a slightly stronger assumption called partial synchrony. A network is partially
synchronous if there exists some finite time bound ∆ before which all messages
get delivered. Researchers should be careful not to require knowledge, or even
an estimate, of ∆ at any point in the consensus algorithm. Most commonly,



safety is achievable in complete asynchrony; it is usually liveness that requires
intermittent or partial synchrony. Partial synchrony is strictly stronger than
intermittent synchrony [15], though as we remark at the end of this section, in
practice the difference between the two is insignificant.

Many of the algorithms we compare make this partial synchrony assumption,
some opting for a variation that says partial synchrony holds after some time
t, often called the Global Stabilization Time. Most, however, make other subtle
assumptions about the network that are difficult to compare with each other.
For example, for safety Gosig assumes partial synchrony but also requires that
any adaptive attacks on validators take effect only after a delay of time ∆.
For liveness, it assumes partially synchronized clocks, meaning that any two
validator’s local clocks only differ by some fixed number [13, §3.2]. In contrast,
in addition to assuming partial synchrony, Best of Both Worlds (BoBW) assumes
that validators are in lock step, which means that they proceed in rounds of fixed
time and any two validators are always within some fixed bound of each other
in consensus. This may seem stronger than Gosig’s partially synchronized clocks
assumption, but as the authors of BoBW point out, one can achieve lockstep
synchrony with partial synchrony and partially synchronized clocks, which they
call bounded drift [14, p. 7].

Thus, aside from BoBW assuming that validators proceed through consensus
in rounds of fixed length and Gosig assuming that adaptive attacks take effect
after a delay, BoBW and Gosig carry the same network assumptions but present
them with different terminology and in entirely different ways. For a researcher
seeking to read and compare these algorithms, it is not easy to tell that they rest
on almost identical network assumptions. Even with this insight in place, because
of these additional, nuanced assumptions that BoBW and Gosig, respectively,
make, it is yet unclear how to compare the algorithms because of a differing
network model. In particular, it is unclear that either of these assumptions is
easy to satisfy in practice, or even that one is stronger or less desireable than
the other.

PBFT also assumes partial synchrony, but uses entirely different language
than BoBW and Gosig to do it. Rather than assuming a bounded delay, the
authors define partial synchrony to be that delay(t), the time a message sent
at time t is delivered to its recipient, cannot grow faster than t indefinitely[4,
§3]. In other words, there is an upper bound ∆ on the delay between a message
being sent and it being received. Of the algorithms we surveyed, PBFT is the
only one to make the partial synchrony assumption and nothing else. Still, it is
difficult to compare its network model with others if such a fundamental notion
is defined in this uncommon way.

Finally, Ouroboros’ assumptions are simply incomparable to the others. It as-
sumes a form of lockstep, without using any standard terminology, which appears
to be strictly stronger than that of BoBW, as it says that any difference in val-
idator’s local clocks is insignificant in comparison to the length of computational
steps in the algorithm. It also assumes, again without standard terminology, a
very strong form of synchrony, which is that any message is received within



the length of a computational step in the algorithm. Recognizing how practi-
cally infeasible this is, Ouroboros is manifestly inferior to the others because
these assumptions sharply curb the speed at which the network can execute the
algorithm.

As the authors of Honey Badger point out, intermittent synchrony more
accurately models the real world and is evidently superior to partial synchrony
[15, §3]. We take the position that any researcher building a consensus algorithm
should do so assuming only intermittent synchrony. While inferior, we also rec-
ognize that partial synchrony, in either form of the definition, still works in
practice. If the algorithm requires assumptions additional to partial synchrony,
the authors should provide evidence that they are readily satisfiable in practice
for any network or algorithm. They should also try to quantify any resulting
effects of these assumptions on network speed or algorithm performance. In or-
der to make fruitful comparisons between consensus algorithms, authors should
be explicit on any network assumptions that do not fall in either of these cat-
egories, including restrictions on hardware, requirements such as bandwidth or
computation power, and so on.

Remark 1. The authors of Honey Badger mention that those consensus algo-
rithms that require partial, as opposed to intermittent, synchrony often rely on
the upper bound ∆ in such a way that an intermittently synchronous network
could starve the system. The example they give is a network that exhibits longer
and longer periods of asynchrony, with corresponding longer and longer periods
of synchrony. In the case of PBFT, this can starve the system, while Honey
Badger would still make progress. However, for practical purposes this network
would also starve Honey Badger if, for example, the network delays go on for
more than a day, or a week, or a year.

The conclusion from their analysis is that an algorithm that performs well on
an intermittently synchronous network can perform better in general than one
that uses the partial synchrony assumption to deal with faults via timeouts. It
is yet unclear how these algorithms that use the partial synchrony assumption
for something other than timeouts compare in performance to those that can
use intermittent synchrony. Since, in practice, messages still need to arrive in a
reasonable time frame for any algorithm to be live, we do not see a meaningful
difference between these intermittent and partial synchrony.



Standard
Network
Assumption

Intermittent synchrony, or ∆-intermittent synchrony, that one can
always find an interval of time during which the average message
delay is at most ∆.

Algorithm Network Assumptions
Special Case
of Standard?

How It Differs From
The Standard

Nakamoto No network assumptions.

PBFT

Assumes partial synchrony,
using a unique definition, as-
serting that the function de-
lay(t) does not grow faster
than t indefinitely.

Yes.

Using the function de-
lay(t) is not standard,
but turns out to be a spe-
cial case of partial syn-
chrony. For a proof, see
Proposition 4 in the Ap-
pendix.

Gosig

Assumes for safety partial
synchrony and that adaptive
attacks take effect only after
a delay of time ∆. For live-
ness, also assumes partially
synchronized clocks.

Yes.

In addition to partial
synchrony, assumes a de-
lay of time ∆ in adap-
tive attacks, as well
as partially synchronized
clocks.

BoBW
Assumes partial synchrony
as well as lock step syn-
chrony.

Yes.

Assumes that validators
proceed in rounds of
fixed time, and that any
two validator are always
within some fixed bound
of each other in con-
sensus. The latter as-
sumption is equivalent
to partially synchronized
clocks.

Ouroboros

Assumes, with nonstandard
terminology, a form of lock
step. From the definition it
is unclear how that com-
pares with other definitions
of lock step. Also assumes a
strong form of synchrony.

Yes.

Strengthens partial syn-
chrony to strong syn-
chrony. Also assumes a
form of lock step syn-
chrony.

Honey Badger
Assumes ∆-intermittent
synchrony.

Yes.
This is the standard, of
which partial synchrony
is a special case.

Fig. 1. Network assumptions display little to no unity across different algorithms and
are thus inherently difficult, if not impossible, to effectively compare with each other.
In this table, we compare each to the standard network assumption. As indicated,
our recommended standard assumption is weaker than each of those that had explicit
assumptions, and strictly so than all but Honey Badger’s. This means that each of the
network assumptions we analyzed are a special case of the standard, ∆-intermittent
synchrony.



5 Adversarial Model

In general we see it as essential that researchers assume the strongest adversarial
model possible, so as to give the most accurate picture of an algorithm’s strength.
This includes assumptions about the proportion of malicious agents and their
behavior.

The standard is to assume that some number less than N
3 of validators are

Byzantine. Their behavior can be arbitrary, including intentionally malicious
activity, collusion, or inactivity. If the protocol uses cryptographic tools, there
should be clear assumptions about what a malicious validator can and cannot
do. In this case it is reasonable to assume that Byzantine validators can’t forge
signatures or invert hash functions. It is, however, perfectly possible that all the
Byzantine nodes collude, even controlling the network to slow consensus, but
not to violate network assumptions. For this reason, again, network assumptions
must be as light as possible.

Researchers proposing a new consensus algorithm should assume the maxi-
mum number of Byzantine validators, bN−13 c. These malicious nodes should be
assumed to be both colluding and controlling the network, where adversaries can
delay messages, duplicate them, or deliver them out of order. Any restrictions
on the adversary should be explicitly stated. These include restrictions on which
messages the network can drop, what a Byzantine node may or may not know,
and even assumptions relating to cryptographic techniques such as hashes or
signatures. For example, PBFT states,

We do assume that the adversary cannot delay correct nodes indefinitely.
We also assume that the adversary (and the faulty nodes it controls) are
computationally bound so that (with very high probability) it is unable
to subvert the cryptographic techniques mentioned above. [4, §2]

BoBW is similarly high quality, in that it assumes a fully adaptive, knowledge-
able adversary that can know the entire internal states of all other Byzantine
validators. As part of their network assumptions, the authors state,

The adversary has full control over the network: It has the power to delay
messages arbitrarily up to ∆ time steps. It can reorder messages, and it
can make some messages arrive multiple times at its intended recipient.
[14, §3]

Nakamoto’s adversarial model is simple, stating that “the system is secure as
long as honest nodes collectively control more CPU power than any cooperating
group of attacker nodes.” [16, §1]. Assumptions related to the hash function,
etc., are implicit in the fact that CPU power is the metric of adversarial power.

Honey Badger, on the other hand, only explicitly states that “the [message]
delivery schedule is entirely determined by the adversary, but every message sent
between correct nodes must eventually be delivered”[15, §4.1]. It reasons about
the adversary throughout the paper, but rather than giving a specific model of
adversarial behavior beforehand, one discovers the assumed adversarial abilities
as the adversary appears in arguments.



There is, for the most part, unity in the blockchain literature about the
behavior of Byzantine validators. We advocate explicit, technical definitions of
possible Byzantine behavior in order to provide as much rigor as possible. In
general, Byzantine behavior should be assumed to be truly arbitrary unless the
algorithm explicitly states limitations. Any limitations imposed should be clearly
stated, though we stress that limitations on Byzantine behavior make compara-
tive analysis difficult at best.

6 Finality

The highest quality consensus algorithms for the blockchain must have both a
precise measure of finality and a point at which a block or transaction can be
declared final such that, under the network and adversarial assumptions, it is
impossible (not just improbable) to be rewritten. Of course, this notion of finality
must depend on the assumptions about the network and adversarial model being
satisfied. Researchers should also explore any inherent limitations on latency and
throughput that the finality conditions in their algorithms impose.

Perhaps unsurprisingly, most algorithms do not mention finality explicitly,
but many do exhibit good finality properties. In particular, blockchains built on
a consensus algorithm based on rounds of message passing, including most of
those we survey here, have an inherent notion of finality because the network
decides on one block at a time. Thus once a block has passed through consensus,
it becomes final.

For these algorithms, finality on a chain is straightforward, but finality on, for
example, a DAG, would be less straightforward and should come with proofs.
Other situations which complicate finality are those, like that of Nakamoto’s
algorithm, that can only give a probability of finality that approaches 1 as time
goes on. For both of these kinds of algorithms, researchers should devote the
time to give a thorough exposition on their algorithm’s finality properties.

The kind of probabilistic finality in Nakamoto’s consensus algorithm seems
inherent to unpermissioned chains, since one can never fully know the entire
set of participants. Understandably, then, of the existing chains, only the per-
missioned chains give exact statements on finality. Considering the nontrivial
security breaches in these unpermissioned chains, most recently ETC [11], we
are partial to permissioned chains principally because of their finality properties.
Despite having a proof of safety, if a consensus algorithm cannot give definitive
finality it can, in practice, not always be safe if the heuristic used to declare a
block “safe” is not always reliable.

In the following sections we treat safety and liveness using a notion of exact
finality. This, of course, precludes straightforward compatibility with Nakamoto-
style proof-of-work consensus. As we mention in Section 8, the definitions we give
can still be used with probabilistic finality with some minor modifications.



7 Safety

Safety is the first of the two core results that any consensus algorithm absolutely
must have. It inherently relies on the notions we have established above, namely
network assumptions, adversarial model, and finality. As it is trivial to write an
algorithm that is live but not safe, namely that in which each validator produces
and finalizes its own blocks only, a consensus algorithm without a proof of safety
is pragmatically worthless. In the definition and discussion that follows we refer
to blocks as the subject of consensus; however, safety can be equivalently proved
on transactions and smart contracts.

Definition 2. A consensus algorithm is safe if and only if:

1. Every finalized block is valid, and
2. For any pair of honest validators v and v′ and blocks b and b′, if v considers

b to be final and v′ considers b′ to be final, then b and b′ do not conflict.

This definition requires the notions of validity and conflicts between blocks,
both of which should be explicitly defined. For a traditional blockchain, a block is
valid if it is constructed correctly according to protocol. Most neglect to mention
validity because it is implicit in the adversarial model. That is, since an adversary
cannot forge signatures, it is easy to reliably identify a block’s sender. The same
is true of transactions from clients. As long as the block structure can be easily
verified to be correct by looking at the contents, one generally need not prove
validity. However, a good researcher will carefully consider the network and
adversarial models to ensure that there are no issues of validity, supplying a
proof if validity is not self-evident. For an excellent example of a definition of
block validity, see Blockmania [8, §2].

Again, on a traditional blockchain, two blocks conflict if they have the same
block height and are not equal. In other words, an algorithm is safe if it cannot
fork. Most of the algorithms we surveyed capture the essence of safety as we
define it here, but the definitions are not equivalent. Definitions of safety tend
to come in two camps. The first is that if one honest validator commits a block,
then all other honest validators will eventually do the same (see Ouroboros
and Honey Badger). The second is that if any two honest validators compare
their chains, their blocks at any given height will be identical (see Nakamoto
consensus, PBFT, Gosig, and BoBW). While the first implies the second, the
second does not imply the first, as the first has a sort of “totality” property (see
Proposition 5 in the Appendix for a proof). We opt for the second of these two
definitions for safety, as such a totality property decidedly relates to liveness,
rather than safety.

Since it’s easy to determine if two blocks conflict on a chain by checking
block height, we might be tempted to define property (2) of Definition 2 as
if honest validators v and v′ each consider b and b′ to be final, then either b
and b′ are at different block heights or they are equal. However, this excludes
consensus algorithms that build a blockdag as opposed to a blockchain, such as
[1], [2], [8], and [19]. In this case, a block’s height is defined to be one more than



Algorithm Terminology for Safety Translated

Nakamoto
Negligible probability of forking or
of a block being overwritten.

No forking.

PBFT Impossibility of forking. No forking.

Gosig Validity and consistency.
If two honest players committed
blocks at height n, the blocks
are equal.

BoBW Validity and consistency
If two honest players committed
blocks at height n, the blocks
are equal.

Ouroboros Persistence.
If an honest player commits a
block, all honest players eventu-
ally will.

Honey Badger Agreement and total order.

If an honest player commits a
block, all honest players eventu-
ally will, and if two honest play-
ers committed blocks at height
n, the blocks are equal.

Fig. 2. Modulo the mention of validity, each of the algorithms we surveyed defined
safety as the property that forking is impossible, honest players have the same blocks
at the same heights, or that any output from an honest player would eventually be
output by all honest players. While these definitions are not actually equivalent, coupled
with liveness properties they are (see Proposition 5 in the Appendix.Aside from that,
the only inconsistency in definitions was a mention of validity, which did not always
happen.

the maximum height of its parents, so equality at a given block height is not a
sufficient notion to describe conflicts, since there can be many blocks at a any
height.

Thus on a blockdag one must clearly define what it means for two blocks
to conflict. In Casanova, for example, the authors clearly define the notion of a
conflict domain, and two blocks conflict if and only if they belong to the same
conflict domain [2]. In contrast, in Blockmania the notion of a block conflict is
intimately related to the notion of block validity [8, §2], and in Prism conflicts
relate to the idea of consistency [1, p.36], but neither give explicit definitions.
For researchers building a consensus algorithm for a blockdag, we recommend
clearly defining the notion of block conflicts in order to produce high quality,
rigorous proofs.

8 Liveness

Liveness is the second core result of any consensus protocol. As it is trivial to
produce a safe algorithm that is not live, where validators simply do nothing,
an algorithm with all the above properties clearly defined, including safety, is
worth almost nothing until one can prove liveness. Liveness, like safety, depends



on network assumptions, the adversarial model, and finality. It is crucial to
clearly understand each of these as they relate to a consensus algorithm in order
to give a proof of liveness.

Definition 3. A consensus algorithm is live if and only if for every honest val-
idator v and finite time t:

1. For any block b generated by v, there exists some time t′ > t where v will
have finalized b, and

2. There is some time t′′ ≥ t′ where every other honest validator will have also
finalized b.

Both of the properties of liveness are important. The first says that correct
blocks can make it through to finalization, while the second block says they do
so transitively, i.e. once they have been finalized by one honest node, they will
eventually be finalized by all honest nodes.1 In certain situations, such as in
algorithms on a traditional blockchain, where the network decides on one block
at a time and only moves forward after a decision has been made, the second
requirement can be implicitly satisfied by the structure of the system. Merely
requiring termination suffices in that case because we know that consensus must
begin, and that correct nodes must be consistent. Therefore, if it terminates, then
it must necessarily satisfy the second requirement. In these situations, liveness
can be simply referred to as termination.

Liveness in the algorithms we surveyed falls generally into two groups. The
first is that honestly generated transactions eventually finalize (see Nakamoto
consensus, Ouroboros, and Honey Badger). PBFT gives a similar, but nuanced,
definition, that the network responds correctly to transactions. The second is
that honest parties eventually terminate with some (valid) output. Interestingly,
these two are not only not equivalent, but they are independent from each other
(see Proposition 6 from the Appendix). Our definition combines and refines the
concepts from both groups, which is significant because of their independence.
Figure 3 gives more details.

It is worth noticing that our definition relies heavily on the notion of finality,
and thus lends itself to permissioned chains better than unpermissioned ones.
However, if, like in the case of BTC or ETH, finality is defined by waiting a
fixed number of blocks, then this definition may still apply. Indeed, the paper
that proved Nakamoto’s algorithm to be safe and live uses the strictly stronger
definition of liveness given both by Ouroboros and Honey Badger [18]. That is
that an honest miner (or validator) that submits blocks to the blockchain will
eventually get them committed. Our definition of liveness requires a specified
moment of finality, thus the existence of t′ and t′′. A consensus algorithm on an
unpermissioned network that, like Nakamoto’s algorithm, can only give proba-
bilistic guarantees of finality can modify our definition to talk about the limit as
time goes to infinity instead of specific instants t′ and t′′, which may not exist.

1 As noted in the last section, some definitions of safety incorporate the second prop-
erty implicitly.



Algorithm Definition of Liveness Translated

Nakamoto
Honestly generated transactions
eventually finalize.

Honestly generated transactions
eventually finalize.

Ouroboros
Honestly generated transactions
eventually finalize.

Honestly generated transactions
eventually finalize.

Honey Badger Censorship resilience.
Honestly generated transactions
eventually finalize (if they’re in-
put to N − f correct nodes).

PBFT
Clients eventually receive correct
replies to their requests.

The network responds correctly
to transactions.

BoBW
Honest parties eventually terminate
with some output.

Honest parties eventually termi-
nate with some output.

Gosig

Starting from any point in time,
there is a finite waiting period be-
fore any given honest player will
commit a valid block.

Honest parties eventually termi-
nate with some (valid) output.

Fig. 3. Definitions of liveness come in two principal groups: that honestly generated
transactions eventually finalize (or a variant of that), and that honest players eventually
have an output. These two definitions are not equivalent (see Proposition 6 in the
Appendix for details). The definition we supply combines the essential ideas of both
groups.

While being unable to specify specific moments of finality is less than ideal, we
consider this to be the standard for liveness on an unpermissioned chain.
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10 Conclusion

The blockchain community, as it matures scientifically, must have firm theoretical
foundations on which to build the theory of consensus on blockchains. Without
standardized foundations, notation, terminology, and assumptions, it is difficult,
if not impossible, to make fruitful comparisons between consensus algorithms for
the blockchain. To this end, this paper surveys six popular consensus algorithms
and, noting problematic inconsistencies, proposes a strong, standard, theoretical
foundation on which any consensus algorithm should be able to draw. Tech-
nical rigor and standardization with regards to Byzantine consensus, network
assumptions, the adversarial model, finality, safety, and liveness are necessary
for confidence in the algorithms themselves. It is our hope that through these
foundations we will be able to reason about and compare consensus algorithms
more successfully, avoiding security problems overlooked either through casual
reasoning or through problematic theoretical foundations.



11 Appendix

Proposition 4. For any time t, let delay(t) equal the delay a message sent at
time t takes to be received. Then requiring that delay(t) does not grow faster than
t indefinitely is a special case of partial synchrony, but they are not equivalent.

Proof. We first treat the case that time t is a real number in the interval [0,∞),
where 0 is the time that the first message is sent. Thus delay(t) must be at least
piecewise differentiable to have the notion of “growth.” Suppose that delay(t)
does not grow faster than t indefinitely. Since delay(t) is piecewise differentiable
on [0,∞), it is piecewise continuous on the same interval. Let G be the set
of all t′ ∈ [0,∞) such that the derivative of delay(t) at t′ is greater than 1
(in other words, delay(t) is growing faster than t at t′). By assumption, G is
bounded above, and therefore has a least upper bound. Let us call that tu. Now
consider delay(t)− t on the interval [0, tu]. Since [0, tu] is closed and bounded, it
is compact. And since delay(t)− t is piecewise continuous on [0, tu], delay(t)− t
achieves its maximum value ∆ on [0, tu]. Note that no message delay ever exceeds
∆, and thus we have partial synchrony.

Going the other direction, we see that there could be cases in which delay(t)
could grow faster than t indefinitely but still achieve partial synchrony. In par-
ticular, we still achieve partial synchrony any time the integral from 0 to ∞ of
( d
dt delay(t)) − 1 converges. In this case, we have partial synchrony where ∆ is

the value of the integral.
In this proof we assumed delay(t) to be piecewise differentiable because it

has a notion of “growth” unspecified by the authors of PBFT. This treats the
case that t is a real number in the interval [0,∞). If time is treated as discrete
time slots, then the proofs only involve a finite number of points, and thus are
trivial. ut

Proposition 5. Consider the following definitions of safety.

1. If any honest player commits a block, then all honest players eventually com-
mit a block.

2. If two honest players have a block at height n, then their blocks are equal.
3. The chain will never fork.

Then the first implies the second and third, the second and third are equivalent,
and neither the second nor the third implies the first.

Proof. (1) =⇒ (2) : Suppose that honest player v1 has block b at height n,
and honest player v2 has block b′ at height n. If b 6= b′, then eventually v1 will
commit b′ at height n, which is a contradiction since v1 is honest.

(2)⇐⇒ (3) : Going forward, if the chain forks, then two honest players must
have different blocks at the same height by definition. Going backward, if two
honest players have different blocks at the same height, there is by definition a
fork.

(2), (3) 6=⇒ (1) : Finally, if v1 has block b at height n, and v2’s chain is not yet
at height n, if v2 doesn’t commit any more blocks to the blockchain, v1 and v2



can satisfy definition (2) but will never satisfy definition (1). If we have liveness,
then v2 will eventually commit b at height n. Thus every honest validator will
eventually commit b at height n, and we have property (1). ut

Proposition 6. Consider the following definitions of liveness.

1. Clients eventually receive correct replies to their requests.
2. Honestly generated transactions eventually finalize.
3. (Censorship resilience) Honestly generated transactions submitted to N − f

correct nodes eventually finalize.
4. Honest nodes eventually produce output.

Then (1) =⇒ (2) =⇒ (3), but nothing else. In particular, none of these
definitions are equivalent and (4) is independent of the rest.

Proof. (1) =⇒ (2): If clients eventually receive correct replies to their requests,
then they will receive confirmations of honestly generated transactions. The
other direction is not true, as an algorithm could satisfy (2) while not responding
to incorrect transactions.

(2) =⇒ (3): If an honestly generated transaction always finalizes, then it
will in the case that it’s submitted to N − f correct nodes. Going the other
direction, there is an equivalence only if N − f correct nodes have to see and
approve a transaction in order to finalize one. Since there are algorithms that
don’t require that, the backward direction does not work.

(4) is independent: Clients could receive correct replies to their requests,
and transactions can finalize, while an honest node is partitioned away or has
temporarily crashed. Coupled with some totality property, an implication would
hold from any of the first three definitions to the fourth. We can’t go the other
way to any of the three, since honest nodes producing an output does not neces-
sarily end in finalization, e.g. if the outputs are different. Furthermore, if a client
submits an honest transaction to a Byzantine node, the network could ignore
the message, satisfy (4), and not satisfy the first three definitions.
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