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Abstract5

Smart contract upgrades are costly from a verification perspective and can be a meaningful source6

of vulnerabilities when done incorrectly. Unfortunately, there is no established, formal framework7

through which one can reason about contracts as they undergo upgrades, though much work has8

been done to verify standalone smart contracts. Instead, one must repeat the full verification process9

for each contract upgrade, something which relies heavily on fallible intuition, can lead to unexpected10

vulnerabilities, and drives up the cost of formally verifying smart contracts. We propose a formal11

framework for contract upgrades in ConCert, a Coq-based smart contract verification tool. Central12

to this framework is our notion of a contract morphism, a theoretical tool which we introduce to13

formally encode structural relationships between smart contracts, and with which we can formally14

specify and verify an upgraded contract relative to its previous versions. We argue that ours is15

a natural framework for specifying and verifying contract upgrades, and hope to offer a first step16

towards rigorous, efficient specification and verification of contract upgrades.17
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1 Introduction23

Faulty upgrades are a meaningful source of smart contract vulnerabilities. Costly attacks24

such as those on Uranium Finance (2021) [8], NowSwap (2021) [4], and Nomad (2022) [7, 9],25

totaling 241 million USD in lost assets, are a few of many examples of contracts attacked26

after an erroneous upgrade. Furthermore, because verifying software is time, labor, and27

resource intensive, it can be difficult to justify formally verifying software which may be28

upgraded quickly or frequently—a problem shared with other verified software, e.g. [16, 21].29

Both of these factors limit the effectiveness of formal methods to address security issues in30

real-world software, inhibiting verification as business and security propositions [18].31

What is needed is a practical and formal framework through which to specify and verify32

contract upgrades. As it stands we have no such framework apart from repeating the formal33

specification and verification process on a new contract version. Not only are upgrades costly34

from a verification perspective, as we have no good way of reusing much of the verification35

work on previous contract versions, but incorrect specifications are themselves a meaningful36

source of contract vulnerabilities [19]. Thus each time a specification is made from scratch37

we risk introducing errors of incorrect specification.38

To mitigate these issues we introduce a formal framework for specifying and verifying39

contract upgrades, through which we can reuse formal specification and proof on previous40

contract versions. This framework relies on the notion of a contract morphism, a theoretical41

tool we introduce that formally encodes structural relationships between smart contracts,42

and with which we can specify and reason about the structure and behavior of an upgraded43

contract relative to its previous versions. We argue that this is a natural framework for44
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1:2 Smart Contract Upgrades in Coq

specifying and verifying contract upgrades, one which could decrease the cost of formally45

verifying contract upgrades as well as the risk of introducing vulnerabilities due to incorrect46

specification.47

We proceed as follows. In §2, we survey related work. In §3, we introduce contract48

morphisms as a formal tool to specify and verify contract upgrades. In §4 we give two49

examples of formally specifying a contract upgrade with contract morphisms. In §5 we50

discuss formal verification with contract morphisms. We conclude in §6.51

2 Related Work52

In the realm of smart contracts there is limited formal work on formal reasoning about53

contract upgrades. Previous work [3, 6] proposes paradigm-shifting methods to either attach54

formal proofs to smart contracts and their upgrades, which are verified by the chain, or to55

trust a canonical third party to verify all contract upgrades before deployment. Unfortunately56

this work is likely impractical, as both solutions require substantial paradigm shifts or re-57

engineering of blockchain ecosystems. The latter also arguably contradicts the permissionless58

ethos of blockchain ecosystems by mandating a trusted third party.59

In the context of software more generally, much work has gone into ensuring that software60

upgrades are carried out safely with formal methods [10, 12, 21]. Recent work has begun61

to address the issue of adapting formal proofs in a proof assistant to changes in software in62

order to lower the cost of formally verified software which may undergo regular upgrades [16].63

This problem is complicated by the computable nature of proofs in proof assistants like Coq;64

chosen data types strongly influence the structure of proofs, making adaptation difficult [11].65

A notable contribution to this work is Ringer et al.’s work on proof repair [14, 15], which66

seeks to relate a new program version to the old—by type equivalences or by comparing67

inductive structures—and thereby reuse previously-completed proofs on the updated code.68

Drawing on this previous work, particularly Ringer et al.’s idea of reusing formal proofs by69

way of structural similarities between programs, our goal is to provide a framework for using70

formal methods to formally specify and verify smart contract upgrades. Contract morphisms71

(§3) will be our primary theoretical tool for specifying and verifying contract upgrades. Their72

purpose is to formally encode a structural relationship between smart contracts which can73

be used for both formal specification and proof reuse. With contract morphisms we address74

the problem of formal reasoning about contract upgrades, but in contrast to previous work75

on the subject our proposed framework does not require the paradigm-shifting reengineering76

of blockchain systems in order to be used.77

Finally, we note that for smart contracts there is a distinction between contract upgrades78

and contract upgradeability. Some contracts come with a predefined logic to handle upgrades79

and avoid hard forks, the most popular of these on Ethereum being the Diamond framework80

[13]. However, they are complicated contracts as their specifications include the upgradeability81

functionality and governance, as well as the functionality of a given version of the contract.82

We will only consider upgrades via hard forks in this paper, leaving the question of rigorous83

formal specification and verification of upgradeable contracts to future work.84

3 Contract Morphisms85

In what follows we define contract morphisms, a theoretical tool which codifies formal86

relationships between smart contracts. In later sections we use them to formally specify and87

verify contract upgrades. We argue that this provides our desired formal framework.88
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3.1 Morphisms of Pure Functions89

Before focusing on the specific case of smart contracts, we consider the more general case90

of programs formalized as pure functions. Take types A, A′ and B, B′, and two functions91

p : A → B and q : A′ → B′. A morphism from p to q is a or a pair of functions fi and fo92

which form a commutative square,93

A A′

B B′

fi

p q

fo
94

i.e. for which
q ◦ fi = fo ◦ p.

Together, we call fi and fo the morphism

f : p → q.

Via fi and fo, the commutative square like the above maps inputs and outputs of p to95

inputs and outputs of q. If p and q are programs (in particular, pure functions), we can also96

interpret this as execution traces of p to execution traces of q, such that transforming the97

inputs of p into those of q with fi, and then applying q is the same as applying p first and98

then transforming the outputs over fo.99

We can define composition of morphisms easily as the composition of commutative squares.
That is, given functions p, q, and r, and morphisms

f ′ : p → q and f ′′ : q → r,

we can define a morphism f := f ′′ ◦ f ′ : p → r by the outer square of the following diagram,100

A A′ A′′

B B′ B′′

f ′
i

p q

f ′′
i

r

f ′
o f ′′

o

101

which is commutative if each of the inner squares are commutative. Note that composition is102

associative, assuming the underlying functions are associative, and that we have the obvious103

identity morphism fid : p → p given by fi, fo := id,104

A A

B B

id

p p

id
105

which commutes trivially. Thus given a well-defined class of functions, which in our case will106

be smart contracts modeled in Coq by pure functions, we have a category on those functions107

with morphisms given by commutative squares on those pure functions.108

In the coming sections, given a morphism f : p → q, we might consider the case that q109

is an upgraded version of p. Because f relates execution traces of q to those of p, we will110

see this can be used to reason formally about q in terms of p, both in specification and111

verification.112

FMBC 2024



1:4 Smart Contract Upgrades in Coq

3.2 Contract Morphisms in ConCert113

In ConCert, a Coq-based tool for smart contract verification which models the execution114

semantics of third-generation blockchains [2] and features verified extraction to various115

blockchains [1], smart contracts are formalized with a Contract type as a pair of pure, stateful116

functions init and receive. The init function governs contract initialization and the receive117

function governs contract calls. The Contract type is polymorphic, parameterized by four118

types: Setup, Msg, State, and Error which, respectively, govern the data necessary for contract119

initialization, contract calls, contract storage, and contract errors.120

For a contract121

C : Contract Setup Msg State Error122

the type signatures of each component function (init C) and (receive C) are given as follows,123

where the types Chain and ContractCallContext are ConCert-specific types used to model124

the underlying blockchain and context.125

126
init C : Chain → ContractCallContext → Setup → result State Error.127

128

receive C : Chain → ContractCallContext → State → option Msg →129

result (State ∗ list ActionBody) Error.130131

Listing 1 Type signature of the init and receive functions, respectively, of a smart contract in
ConCert.

Now consider contracts C1 and C2,132

C1 : Contract Setup1 Msg1 State1 Error1133

C2 : Contract Setup2 Msg2 State2 Error2.134

We define a data type of morphisms between contracts C1 and C2,135

ContractMorphism C1 C2.136

This data type consists firstly of four component functions between the contract types of C1137

and C2—the Setup, Msg, State, and Error types respectively.138

setup_morph : Setup1 -> Setup2139

msg_morph : Msg1 -> Msg2140

state_morph : State1 -> State2141

error_morph : Error1 -> Error2.142

We can use these component functions to make commutative squares like those we saw in §3.1143

for each of the init and receive functions. For init, the horizontal arrows of the squares are144

given by the functions mA_init and mB_init. For receive, the horizontal arrows are given145

by the functions mA_recv and mB_recv. See Listing 2 for the definition of these functions in146

terms of the four component functions given above.147

Ainit A′
init Arecv A′

recv

Binit B′
init Brecv B′

recv

mA_init

init init′

mA_recv

receive receive′

mB_init mB_recv
148
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(* functions to form a commutative square on init *)
mA_init :=

fun (c : Chain) (ctx : ContractCallContext) (s : Setup) ⇒
(c, ctx, setup_morph s).

mB_init := fun (res : result State Error) ⇒
match res with
| Ok init_st ⇒ Ok (state_morph init_st)
| Err e ⇒ Err (error_morph e)
end.

(* functions to form a commutative square on receive *)
mA_recv := fun (c : Chain) (ctx : ContractCallContext)

(st : State) (op_msg : option Msg) ⇒
(c, ctx, state_morph st, option_map msg_morph op_msg).

mB_recv := fun (res : result (State ∗ list ActionBody) Error) ⇒
match res with
| Ok (init_st, nacts) ⇒ Ok (state_morph init_st, nacts)
| Err e ⇒ Err (error_morph e)
end.

Listing 2 The functions which we use for the horizontal arrows of a pair of commutative squares
f_init : init C1 -> init C2 and f_recv : receive C1 -> receive C2, respectively, in the
definition of a contract morphism.

The functions defined above give us squares, but to finish the definition of contract149

morphisms we need these squares to commute. Thus our definition includes two coherence150

conditions, one for the init square and one for the receive square, which are given as follows.151

152
(* The coherence condition that makes the init square commute *)153

init_coherence: forall c ctx s,154

(match (init C1 c ctx s) with155

| Ok init_st ⇒ Ok (state_morph init_st)156

| Err e ⇒ Err (error_morph e)157

end) =158

(init C2 c ctx (setup_morph s)).159

160

(* The coherence condition that makes the receive square commute *)161

recv_coherence : forall c ctx st op_msg,162

(match (receive C1 c ctx st op_msg) with163

| Ok (new_st, new_acts) ⇒ Ok (state_morph new_st, new_acts)164

| Err e ⇒ Err (error_morph e)165

end) =166

(receive C2 c ctx (state_morph st) (option_map msg_morph op_msg)).167168

Thus a contract morphism169

m : ContractMorphism C1 C2170

is defined as a pair of commutative squares, each of which are morphisms between the171

respective init and receive functions of each contract. We give the formal definition of a172

contract morphism in Listing 3.173

As the name morphism suggests, we should expect contract morphisms to behave like174

morphisms in a well-defined category. That is, we should have an associative composition175

operation on morphisms, and for every contract C should have an identity morphism176

FMBC 2024



1:6 Smart Contract Upgrades in Coq

Record ContractMorphism
(C1 : Contract Setup1 Msg1 State1 Error1)
(C2 : Contract Setup2 Msg2 State2 Error2) :=
build_contract_morphism {

(* the components of a morphism *)
setup_morph : Setup1 → Setup2 ;
msg_morph : Msg1 → Msg2 ;
state_morph : State1 → State2 ;
error_morph : Error1 → Error2 ;
(* coherence conditions *)
init_coherence : forall c ctx s,

result_functor state_morph error_morph (init C1 c ctx s) =
init C2 c ctx (setup_morph s) ;

recv_coherence : forall c ctx st op_msg,
result_functor (fun ’(st, l) ⇒ (state_morph st, l))

error_morph
(receive C1 c ctx st op_msg) =

receive C2 c ctx (state_morph st)
(option_map msg_morph op_msg) ;

}.

Listing 3 The formal definition of a contract morphism in ConCert, consisting of four component
functions and two coherence conditions, which together give a pair of commutative squares.

id_C : ContractMorphism C C177

with which composition is trivial.178

Indeed, this is the case. We can compose morphisms by composing the morphism179

component functions. We have two results,180

compose_init_coh and compose_recv_coh,181

which show that coherence of the composed morphism follows from the coherence conditions182

of each individual morphism. These results simply show that commutative squares compose,183

as we saw in §3.1, giving us a well-defined composition function compose_cm.184

185
compose_cm : forall C1 C2 C3186

(g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) : ContractMorphism C1 C3.187188

We also have a proof that composition is associative, drawing on the associativity of component189

functions, and we have the obvious identity morphism, given by four identity component190

functions, such that composition with the identity is trivial.191

192
Definition id_cm (C : Contract Setup Msg State Error) :193

ContractMorphism C C := {|194

(* components *)195

setup_morph := id ;196

msg_morph := id ;197

state_morph := id ;198

error_morph := id ;199

(* coherence conditions *)200

init_coherence := init_coherence_id C ;201

recv_coherence := recv_coherence_id C ;202

|}.203204
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This gives us a well-defined category Contracts of smart contracts, with objects given by205

the Contract type and morphisms given by the ContractMorphism type.206

Note that in many categories, e.g. the categories of sets, topological spaces, or groups,207

morphisms are structure-preserving functions. So too for us. The existence of a morphism208

f : ContractMorphism C1 C2209

indicates a structural and mathematical relationship between contracts C1 and C2, in particular210

relating their execution traces via the four component morphisms. As we will see, this211

relationship can be exploited to prove theorems about one contract in terms of another212

contract, something which we will do here in the case of contract upgrades and upgradeability.213

In many categories there are also different classes of morphisms, including injections214

(embeddings, monomorphisms), surjections (quotients, epimorphisms), and isomorphisms.215

Injections, or embeddings, typically preserve the structure of the domain faithfully within216

the codomain, essentially identifying a copy of the domain within the codomain. Surjections217

typically represent a compression of some kind, and the information lost in the compression218

can frequently be described by a kernel object. As we will see, we also have injective and219

surjective contract morphisms, which are given when the four component functions are,220

respectively, injective or surjective, and which follow analogous intuitions.221

4 Morphisms to Formally Specify and Verify Contract Upgrades222

Our goal now is to use contract morphisms as a tool to formally specify and verify con-223

tract upgrades in ConCert. Consider a contract upgrade from the perspective of a formal224

specification. Contracts are usually upgraded with a goal that relates the new to the previ-225

ous contract version, whether it be to patch a bug, add functionality, or improve contract226

features. Thus the new specification relates to the old—it should eliminate a vulnerability227

but preserve all other functionality, be backwards compatible while adding functionality, or228

make improvements such as greater gas-efficiency without deviating from the behavior of229

the previous contract version. Of course, in practice an upgraded contract is not formally230

specified in relation to an older version, but rather by altering the old specification into the231

new, or simply starting from scratch and writing a new specification by hand. As discussed232

in §1, this can be a source of vulnerabilities.233

In this section, we will formally specify contract upgrades in two examples using contract234

morphisms. The advantage of using morphisms is that we are able to clearly articulate235

the intent of an upgrade in the formal specification by way of a morphism in such a way236

that formal verification consists of producing a morphism between the updated contract237

implementation and a previous version which meets the required specification.238

▶ Example 1 (Swap Contract Upgrade). Consider a smart contract C1 that prices and executes239

trades, e.g. a decentralized exchange (DEX) or an automated market maker (AMM) [22].240

Suppose that we wish to upgrade C1 to a contract C2 so that it calculates trades at higher241

precision by a factor of ten, meaning that the internal token balances in storage have one242

more decimal place, and the trade calculation is able to calculate at one decimal place greater243

in precision. Then in ConCert our contract C1 will have a storage type which keeps track of244

internal token balances, exposed by a function get_bal.245

246
Context { storage : Type } { get_bal : storage → N }.247248

It will also have a TRADE entrypoint which accepts a payload of some type, trade_data,249

characterized by an entrypoint type, entrypoint, and an associated typeclass, Msg_Spec.250

FMBC 2024



1:8 Smart Contract Upgrades in Coq

251
Class Msg_Spec (T : Type) := {252

(* the trade entrypoint *)253

trade : trade_data → T ;254

(* for any other entrypoint types *)255

other : other_entrypoint → option T ;256

}.257

258

(* We assume an entrypoint conforming to Msg_Spec *)259

Context { entrypoint : Type } ‘{ e_msg : Msg_Spec entrypoint }.260261

Listing 4 We assume an entrypoit type entrypoint, characterized by a typeclass Msg_Spec,
which includes a trade function trade.

Now assume that C1 has some internal function calculate_trade that it uses to calculate262

how many tokens will be traded out for a given contract call to the TRADE entrypoint. The263

trade quantity, internal token balances, and the calculate_trade function will all be accurate264

up to some decimal place, commonly 9 in the wild, formalized in the following specification,265

spec_trade, of C1.266

267
(* the specification of C1’s trading functionality with regards to the268

calculate_trade function *)269

Definition spec_trade : Prop :=270

forall cstate chain ctx trade_data cstate’ acts,271

(* for any successful call to C1’s trade entrypoint, *)272

receive C1 chain ctx cstate (Some (trade trade_data)) =273

Ok(cstate’, acts) →274

(* the balance in storage updates according to the275

calculate_trade function *)276

get_bal cstate’ =277

get_bal cstate + calculate_trade (trade_qty trade_data).278279

Listing 5 The formalized proposition that C1 uses calculate_trade to price trades.

The property of Listing 5, spec_trade, is a specification with regards to which C1 is assumed280

to be correct.281

Now we wish to upgrade C1 to a new contract C2 such that C2 calculates trades and keeps282

balances at one decimal place higher of accuracy. We will first have a specification for C2283

which is analogous to spec_trade in Listing 5, which says that C2 uses some new function,284

calc_trade_precise, to calculate its trades.285

286
(* The specification of C2’s trading functionality with regards to the287

calculate_trade_precise function. This is analogous to spec_trade *)288

Definition spec_trade_precise : Prop :=289

forall cstate chain ctx trade_data cstate’ acts,290

(* for a successful call to C2’s trade entrypoint, *)291

receive C2 chain ctx cstate (Some (trade trade_data)) = Ok (cstate’, acts) →292

(* the balance in storage updates according to the293

calculate_trade_precise function *)294

get_bal cstate’ =295

get_bal cstate +296

calculate_trade_precise (trade_qty trade_data).297298

Listing 6 The formalized proposition that C2 uses calculate_trade_precise to price trades.
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Our goal now is to use a contract morphism to complete the formal specification of C2 in299

terms of C1. Our specification is this: A correct implementation of the upgraded contract C2300

must satisfy spec_trade_precise and be accompanied by a contract morphism301

f : ContractMorphism C2 C1302

with the following five properties, stated formally in Listing 7:303

1. msg_morph f rounds down the precision of messages to trade by a factor of 10304

2. msg_morph f is the identity morphism on all messages aside from messages to trade305

3. state_morph f rounds down on the balances kept in storage exposed by get_bal306

4. error_morph f and setup_morph f are the respective identity functions307

308
(* FORMAL SPECIFICATION:309

An upgrade C2 must admit a morphism310

f : ContractMorphism C2 C1311

with the following properties: *)312

313

(* 1. msg_morph f rounds trades down when it maps inputs of the receive function *)314

Definition f_recv_input_rounds_down315

(f : ContractMorphism C2 C1) : Prop :=316

forall t’, exists t,317

(msg_morph C2 C1 f) (trade t’) = trade t ∧318

trade_qty t = (trade_qty t’) / 10.319

320

(* 2. msg_morph f only affects the trade entrypoint *)321

Definition f_recv_input_other_equal322

(f : ContractMorphism C2 C1) : Prop :=323

forall msg o,324

(* for calls to all other entrypoints, *)325

msg = other o →326

(* f is the identity *)327

option_map (msg_morph C2 C1 f) (other o) = other o.328

329

(* 3. state_morph f rounds down on the storage *)330

Definition f_state_morph (f : ContractMorphism C2 C1) : Prop :=331

forall st, get_bal (state_morph C2 C1 f st) = (get_bal st) / 10.332

333

(* 4. error_morph f and setup_morph f are the identity functions *)334

Definition f_recv_output_err (f : ContractMorphism C2 C1) : Prop :=335

(error_morph C2 C1 f) = id.336

337

Definition f_init_id (f : ContractMorphism C2 C1) : Prop :=338

(setup_morph C2 C1 f) = id.339340

Listing 7 The formal specification of the upgrade from C1 to C2.

The meaning of a morphism f satisfying the above conditions, as a specification, is in341

the coherence conditions of f. We know that every possible execution trace of C2 has a342

corresponding execution trace in C1, and we know that the input messages are identical343

except that C2 accepts trades at a higher level of precision. The coherence conditions also344

tell us that the state of C2 is always related to the analogous state of C1, expressed in the345

function state_morph. With regards to the trading functionality of our new contract C2, we346

know that the balance kept in the storage of C2, which is affected by trades, will always be347

identical to the analogous balance of C1 after rounding down, which we can formally prove.348

FMBC 2024



1:10 Smart Contract Upgrades in Coq

349
Theorem rounding_down_invariant bstate caddr350

(trace : ChainTrace empty_state bstate):351

(* Forall reachable states with contract at caddr, *)352

env_contracts bstate caddr = Some (C2 : WeakContract) →353

(* cstate is the state of the contract AND *)354

exists (cstate’ cstate : storage),355

contract_state bstate caddr = Some cstate’ ∧356

(* cstate is contract-reachable for C1 AND *)357

cstate_reachable C1 cstate ∧358

(* such that for cstate, the state of C1 in bstate,359

the balance in cstate is rounded-down from the360

balance of cstate’ *)361

get_bal cstate = (get_bal cstate’) / 10.362363

Listing 8 All reachable states of C2 round down to their corresponding states in C1.

Most importantly, f guarantees a relationship between the trading functionality of C2 and364

that of C1: C2 emulates the exact same trading behavior as C1 after rounding down one365

decimal place in precision. This means that C2 does not introduce any novel vulnerabilities366

relating to trades and balances not extant to C1. In particular, a proof of this fact would367

have prevented the attacks on Uranium Finance [8], NowSwap [4], and Nomad [7].368

Moving on, note that f of Example 1 was directed from C2 to C1. The coherence conditions369

of f forced all execution traces of C2 to conform to a pattern set by C1, which is precisely370

what lets us make the claim that we haven’t introduced any new behaviors regarding trading371

functionality to C2 aside from the increase in precision. Morphisms directed in the opposite372

direction can also be used in specification. Rather than classifying all possible execution373

traces of the upgrade, in this case a morphism proves that certain desired behavior exists374

within the contract. We illustrate with an example of specifying backwards compatibility.375

▶ Example 2 (Backwards Compatibility). Consider contracts C1 and C2, where C2 is again an376

upgrade of C1, and suppose that we wish to show that C2 is backwards compatible with C1.377

The intent of this upgrade is that the full functionality of C1 be present within C2. We show378

this by embedding C1 into C2 via an injective contract morphism.379

We illustate with a simple example of a counter contract C1 which keeps some n : N in380

storage and has one entrypoint incr that increments the natural number in storage by 1. C1381

is upgraded to C2, which in addition to an entrypoint to increment the natural number in382

storage also includes a decr entrypoint to decrement the natural number in storage by 1.383

384
Inductive entrypoint1 := | incr (u : unit).385

Inductive entrypoint2 := | incr’ (u : unit) | decr (u : unit).386387

Listing 9 The entrypoint types of C1 and C2, respectively.

We prove that C2 is backwards compatible with C1 by defining a contract morphism388

f : ContractMorphism C1 C2389

with the following component functions.390

391
Definition msg_morph (e : entrypoint1) : entrypoint2 :=392

match e with | incr _ ⇒ incr’ tt end.393

Definition setup_morph : setup → setup := id.394

Definition state_morph : storage → storage := id.395

Definition error_morph : error → error := id.396397
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These component functions do the obvious thing—send calls to the increment entrypoint of398

C1 to the increment entrypoint of C2 with the same payload, and do nothing otherwise. And399

f is an embedding since each of its component functions are manifestly injective, which we400

can formally prove.401

402
Lemma f_is_embedding : is_inj_cm f.403404

Again, the meaning of f as a specification is in its coherence conditions. Any reachable405

state of C1 necessarily has an analagous reachable state of C2 which is fully structure preserving:406

if we were to only use the functionality of C2 which it inherits from C1, we would get identical407

contract behavior to C1. We have a formal proof of this result.408

409
Theorem injection_invariant bstate caddr410

(trace : ChainTrace empty_state bstate):411

env_contracts bstate caddr = Some (C1 : WeakContract) →412

(* Forall reachable states cstate of C1,413

there’s a corresponding reachable state414

cstate’ of C2, related by the injection *)415

exists (cstate’ cstate : storage),416

contract_state bstate caddr = Some cstate ∧417

(* cstate’ is a contract-reachable state of C2 *)418

cstate_reachable C2 cstate’ ∧419

(* .. equal to cstate *)420

cstate’ = cstate.421422

Listing 10 C2 is backwards compatible with C1 via the embedding f.

This is a toy example, but in practice specifying a new contract which is backwards compatible423

to the old in this strong sense may not be straightforward. Via contract embeddings, contract424

morphisms give us a way of formally specifying and verifying backwards compatibility.425

5 Further Applications of Morphisms in Formal Verification426

Contract morphisms establish a relationship between contracts which makes them suitable427

for specifying and verifying upgrades. For that same reason, contract morphisms may also428

have applications in proof reuse, or proof transport, more generally. The special case of429

contract isomorphism may also provide a stronger relationship between formal specification430

and proof on the associated contracts.431

5.1 Hoare Properties and Contract Morphisms432

First we consider properties that transport over a morphism, in particular those that we433

can pull back over a morphism. Hoare properties are a particularly strong example: they434

relate pre-conditions to post-conditions, which is relevant to morphisms because morphisms435

relate inputs and outputs of contract executions. As contracts are formalized in ConCert,436

constraints on on inputs amount to pre-conditions, and constraints on outputs amount to437

post-conditions. Thus for contracts C1 and C2 and a morphism f : ContractMorphism C1 C2,438

we might expect to be able to transport Hoare properties of one contract over f to the other.439

Indeed, any Hoare property proved for C2 will always have an analogous result on C1,440

mediated by f. We proved this in two results which relate all reachable states of C1 to those441

of C2, and those of C2 to those of C1, via the state_morph component of f. These results,442

left_cm_induction and right_cm_induction, are collectively called morphism induction, as443

they allow us to induct along the execution trace of one contract in relation to that of another.444
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In particular, morphism induction says that properties of the state of C2 which are invariant445

over state_morph must hold for all states of C1.446

As a toy example of this relationship, suppose that we can prove that if a certain boolean447

in the storage of C2 is set at true, a given entrypoint e2 of C2 can be successfully called, and448

that it fails otherwise. Suppose further that the msg_morph component of f sends all calls449

to an entrypoint e1 of C1 to calls to e2, and that the state_morph component of f sends a450

state of C1 with an analogous boolean set at true to one of C2 with the boolean set at false,451

and visa versa. Then by morphism induction on the trace of C1, we get for free that calls to452

e1 succeed only when the analogous boolean in the state of C1 is set at false, rather than453

true. The relationship encoded by f between contracts C1 and C2 shows that C1 and C2 use454

opposing, but predictably related, logic for execution, which allows us to reuse proofs on C2455

to prove analogous results on C1.456

5.2 Isomorphisms and Propositional Indistinguishability457

This relationship between contracts strengthens when we have a pair of morphisms458

f : ContractMorphism C1 C2 and g : ContractMorphism C2 C1459

such that compose_cm g f = id_cm C1 and compose_cm f g = id_cm C2. This is an isomorph-460

ism of contracts. Isomorphisms of contracts are particularly strong; the component functions461

are equivalences of types and they induce a bisimulation of contracts in ConCert.462

Since bisimulation is a strong and mathematically stable notion of equivalence [17], future463

work could investigate proof transport over contract isomorphisms, building on recent work464

in Coq-based formal methods. For example, we may wish to prove results on a contract465

optimized for formal reasoning, and transport those onto a bisimlar, performant contract,466

similar to the work of Cohen et al. [5]. This might include altering certain data types while467

maintaining an equivalence; chosen data types have a strong influence on the structure of468

proofs and can be nontrivial to transport [11, 15, 20].469

6 Conclusion470

Our goal in this paper was to provide a formal framework for formally specifying and verifying471

smart contract upgrades in Coq. To do so we introduced the notion of a contract morphism,472

which encodes a formal relationship between execution traces of two contracts. We argued473

that this was a suitable, formal notion with which to reason about contract upgrades and474

provided examples of contract upgrades which can be specified and verified with contract475

morphisms. To our knowledge, this is the first time that the intent of an upgrade has been476

articulated explicitly in formal specification, and is the first formal attempt at reasoning477

explicitly about contract upgrades in a formal setting.478

This work is intended to be a preliminary framework for reasoning about contract upgrades479

in Coq. As such, there are practical questions to be asked, such as whether these tools480

are even feasible on gas-optimized code, which can be difficult to formally reason about.481

Even so we are optimistic, as the previously-mentioned work by Ringer et al. in proof482

repair is practically useful and resembles our framework from a theoretical standpoint. Since483

the status quo is to simply update the formal specification of a previous version into the484

specification of the new, we hope that contract morphisms will be a strong start to efficient485

and rigorous verification of contract upgrades.486
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