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This document contains a (pretty standard) proof of the Banach-Tarski Paradox. It is meant to be
a fun read for any person who has the concepts of groups (including free groups) and group actions
under her belt. These, along with a firm understanding of countable vs uncountable infinities, are
the only prerequisites to understanding the result we present here—even though the content we
present here feels geometric in nature, or even topological. A happy surprise to students who heard
about this paradox in one of their introductory math courses but have not yet seen the proof. Since
it doesn’t come up in classes very often, I thought I would include it here for fun.

This “paradox” is really nothing to be scared of. Nor is it very paradoxical. You’ve already learned
that there are the same number of even integers as there are (even and odd) integers. Also, there
are as many real numbers in the entire number line as there are between 0 and 1. Considering these
initially unintuitive observations about infinity, the Banach-Tarski Paradox is less of a paradox and
more of just a fun theorem that you can wow your non-math friends with.

We’re going to present this proof in two parts: We will first prove the theorem for S2 minus a
certain countable set D, which we will define. That’s our stepping-stone, from there, we can prove
the result for all of S2. There is an analagous result for B3, and a generalized version of this
theorem. We hope to add these to this document in the future.

I suppose we should start by stating the theorem.

Theorem 1 (Banach-Tarski for S2). There exists a partition of S2 into finitely many pieces which
can be rotated to form two copies of S2.

1 The Hausdorff Paradox

To begin, we’ll first make a rather interesting observation about free groups. Take a free group on
two generators, F := F(x, y). Recall that any element in F is a reduced word with the alphabet
x, y, x−1, y−1. As a set, we can partition F by what element comes first in each word (or element)
of F . That is, we can form Fx to be the set of words in F which begin with x, Fy to be the set of
words in F which begin with y, and so on for Fx−1 and Fy−1 . This gives us a partition:

F = Fx t Fy t Fx−1 t Fy−1 t e (1)

(the square union brackets denote disjoint unions). Let’s take a closer look at this partition. Notice
that if I take Fx−1 and multiply each of its elements on the left by x, then I get all of F , minus
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those elements that begin with x (nothing in Fx−1 can begin with x−1x because the words have to
be reduced). So I also have a partition of F given by

F = Fx t xFx−1 ,

and likewise for Fy and yFy−1 .

This means that I can take F , break it up into five pieces like in (1). Then if I multiply Fx−1 on the
left by x and Fy−1 by y, I can rearrange the pieces of F into two copies of F , plus an extra point {e}.
The idea of breaking up F strategically, multiplying some of the pieces by the correct element, and
then rearranging the pieces into two copies of F is exactly the idea of the Banach-Tarski paradox,
but applied to the elements of S2. The way these two things connect is through rotations of S2,
i.e. the natural group action of SO(3) on S2. For convenience, we will write the group action on
the right.

1.1 The Action of a Free Subgroup of SO(3) on S2

Take a copy of S2 and consider the natural group action of SO(3) on S2 by rotations. We’d like to
partition S2 using orbits of some kind via the action of SO(3) on S2. If we use the whole of SO(3),
this won’t yield anything interesting, because for any two points x and y on S2, there exists some
rotation of S2, i.e. an element of SO(3), that sends x to y. Thus we want to restrict ourselves to
some special rotations of S2, or some subgroup of SO(3). Recall that we’re trying to partition S2

by the group action, so we’re going to try to find a free subgroup of SO(3) and then restrict our
attention to that group.

Recall from before that
F = Fϕ t Fϕ−1 t Fψ t Fψ−1 t e

and that
F = Fϕ t ϕFϕ−1 = Fψ t ψFψ−1 ,

and so for our purpose, we would ideally like to consider a free group of rotations, on two generators.
Fortunately for us, one such group exists!

It is generated by ϕ, a counterclockwise rotation about the x-axis by cos−1(1/3), and ψ, a coun-
terclockwise rotation about the y-axis by sin−1(1/3). In terms of matrices, this translates to

ϕ =

1 0 0

0 1
3

−2
√
2

3

0 2
√
2

3
1
3

 ψ =

 1
3

−2
√
2

3 0
2
√
2

3
1
3 0

0 0 1

 .

As it turns out, ϕ and ψ generate a free subgroup of SO(3). I will include this proof in the
appendix (if it’s not there now, it will be in the future). In any case, the specifics of ϕ and ψ are
not important; we could choose any free subgroup of SO(3) on two generators that we like. The
free group on two generators is all we need here.

Let F = F(ϕ,ψ), the free group generated by ϕ and ψ. Now that we have F , let’s consider F -orbits
of S2, via the natural action. Note that a finitely-generated free group is countable, and so any
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F -orbit of S2 can only be countable. Therefore, there are uncountably many F -orbits on S2 (the
countable union of countable sets is countable). Let’s see if we can partition this set into finitely
many pieces. There are considerably more than finitely many orbits, so we’ll have to get creative
here.

Using the Axiom of Choice, choose one representative of each orbit, and put them all into a set
which we will call B′0 (we’ll define an improved set, B0, later). We can think of this of having
taken F , chosen a starting point, hit it with F , and then chosen a new starting point which was
not hit in the orbit of our first, then hitting the new one with F , and so on, “uncountably many
times”—whatever that means. After finishing that, we’ve taken all the starting points and put
them into B′0. (This explanation is for intuition, not rigor!)

Note that, after choosing B′0, each point in x ∈ S2 can be reached by hitting an element of B′0 with
an element, say ρ, of F . We know that any element of F is a word with the letters ϕ, ϕ−1, ψ, ψ−1

and so we can define the following set:

B′ϕ := {x ∈ S2 |x = bρ, where b ∈ B′0 and ϕ is the first letter of ρ.}

Intuitively, this is the set of elements of S2 that can be reached from B′0 by a rotation which starts
with ϕ. We can do the same things for B′ϕ−1 , B′ψ and B′ψ−1 . And because of our decomposition of
F , we can write down the following decomposition:

S2 = B′0 ∪B−1ϕ ∪B′ϕ−1 ∪B′ψ ∪B′ψ−1 .

And we can use our trick from before to rotate two of the sets and rearrange them to get

S2 = B′ϕ ∪ ϕB′ϕ−1 = B′ψ ∪ ψB′ψ−1

where
ϕB′ϕ−1 = {bϕρ | bρ ∈ B′ϕ−1}, and ψB′ψ−1 = {bψρ | bρ ∈ B′ψ−1}.

This is just what we wanted! Wait...

This is exciting and all, but we run into a slight problem here. If you noticed, for this decomposition,
I used ∪ instead of t to denote the unions. What was meant by this is that these unions need not
be disjoint. There is a set of points in S2 that gives us problems, and that we have to account for.
These points are those fixed by rotations in F ; each rotation of S2 has two antipodal points which
are fixed by the rotation—the axes of rotation.

To show why this is an issue, suppose that x is on the axis of rotation of ρ ∈ F , and without loss
of generality, suppose that the first rotation in ρ is ϕ. If we had the misfortune of choosing x to
be in B′0, then x is in B0 (the set of “starting points”) but x is also in B′ϕ (the set of elements in
S2 which can be reached from B′0 by a rotation which starts with ϕ). We might try to choose B′0
carefully, so that nothing in B′0 lies on a axis of rotation, but this is actually impossible.

To show this, suppose that we can choose B′0 in this way, and suppose that x is on the axis of
rotation of some non-identity element ρ ∈ F (thus x 6∈ B′0). In other words, xρ = x, where ρ 6= e.
Then there is some b ∈ B′0 and some non-identity σ ∈ F such that bσ = x, and (bσ)ρ = bσ. Note
that σρσ−1 is not the identity. This gives us that b is fixed by (σρσ−1), since:

b(σρσ−1) = (bσ)ρσ−1 = (bσ)σ−1 = b.
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Thus b was on the axis of rotation of an element of F , and this gives us a contradiction. So we
definitely have a problem with the unions from before not being disjoint.

Notice that what we just proved here was that if I have an F -orbit which contains one point of S2

lying on an axis of rotation of an element of F , then all of them lie on some axis of rotation of some
(different) element of F . This means that if I take out all the points of S2 that lie on some axis of
rotation, then I can still consider F -orbits on the remaining points without any problems. Cool!

This means that, if we write D to be the set of all points in S2 fixed by some element of F (for
those familiar with group actions, D is the union of stabilizers of elements of F ), then we can
rewrite our decomposition of S2 before, but with disjoint unions. To that end, define the sets B0,
Bϕ, Bϕ−1 , Bψ and Bψ−1 to be the intersection of their prime counterparts with S2 \D. That is,
B0 := B′0 ∩ S2 \D, Bϕ := B′ϕ ∩ S2 \D, etc. The reason we can do this without having to rechoose
B0 is that when we removed D from S2, we took out whole F -orbits at a time, and so the structure
that we wanted from these sets is still there.

This gives us:
S2 \D = B0 tB−1ϕ tBϕ−1 tBψ tBψ−1 .

And we can use our trick from before to rotate two of the sets and rearrange them to get

S2 = Bϕ t ϕBϕ−1 = Bψ t ψBψ−1

where
ϕBϕ−1 = {bϕρ | bρ ∈ Bϕ−1}, and ψBψ−1 = {bψρ | bρ ∈ Bψ−1}.

What this means is that we took S2 \D, carefully divided it up into five parts, rotated two of them,
and reassembled them to get two identical copies of S2 \D, and an extra B0 to spare. This is much
closer to what we wanted, because the unions are finally disjoint. Now all we have to do is work
out something with D, which is where it really gets interesting!

1.2 Resolving D

This is actually a quick, relatively painless trick. To illustrate what we’re about to do, consider the
unit circle S1 in C. Start with the point e0 = 1 and choose points by rotating counter-clockwise
by any rational angle, say by 1/10. This gives us a sequence of points, e0, ei/10, e2i/10, e3i/10, and
so on. Note that since 2π is irrational, and 1/10 is rational, this sequence will never repeat itself.
If we call the sequence D′, we can do a funny trick: Take D′ in S1 and multiply everything in D′

by ei/10. In other words, rotate each element in D′ by the angle 1/10. All that we’ve done is move
around some points of S1 (we haven’t deleted any of them), but what we end up with is S1, minus
the point at 1. If we continue rotating, we can take out as many points as we like—indeed, by
simply rotatiting D′ we can remove any finite number of points from S1 by rearranging the points,
and not actually deleting them. This can be done for any infinite sequence D′, and only requires
that we move elements of D′ along in the sequence. Furthermore, if we start with any finite number
of points missing from S1, we can fill them by using a sequence. If the sequence follows the pattern
of D′ (i.e. its terms are made from rational rotations), you can fill the empty points by rotating a
subset of S1.

With this in mind, let’s get back to our case with S2 and D. We’re going to do a trick similar to
the one we just did for S1, but for S2. Take a rotation wich does not fix any points of D. This is
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done by just taking a rotation of S2 in SO(3) \F , as its axis of rotation, by definition D, does not
contain any points of D. Let that asix be `. (One can also argue that D is countable, and there are
uncountably many antipodal points in S2, so such an axis must exist.) Using `, we’d like to find
an angle, just as we did in the case of S1, that allows us to rotate the points of D about ` without
ever hitting the same points twice.

Formally, let `θ be the rotation of S2 about `, counterclockwise, by the angle θ ∈ [0, 2π). What we
want is to find θ such that, for all n 6= m, n,m ≥ 0,

D`nθ ∩D`mθ = ∅. (2)

Let’s first prove a slightly weaker result, which is that we can find a θ such that, for all n > 0,

D ∩D`nθ = ∅. (3)

Let’s prove this by constructing the following set:

A = {α ∈ [0, 2π) | there is some d ∈ D and n > 0 such that d`nα ∈ D.}

Now, what is the cardinality of A? Since any d ∈ D can be rotated onto another point d′ ∈ D at
most a countable number of ways, and D is countable, for each d, there are only countably many
α ∈ A which rotate d onto another point in D. Again, since D is countable and the countable union
of countable sets is countable, A must be countable. Therefore, [0, 2π) \ A is nonempty, meaning
that we can choose some θ that satisfies Equation (3). Great!

Now why does (2) follow? If there are m,n ≥ 0 such that n 6= m and D`nθ ∩D`mθ is nonempty, then
there are elements d, d′ ∈ D such that d`nθ = d′`mθ . Without loss of generality, suppose that n < m.
Then hitting both sides by `−nθ = (`nθ )−1, we get that d = d′`m−nθ , which contradics Equation (3).

Now we’re ready to apply the trick. Let’s take D to be the union of D and all its powers under
σ = `θ. That is,

D =
∞⋃
n=0

Dσn.

Note that Dσ = D \D, and thus that (D \D)σ−1 = D.

This means that if we have S2 \ D, we can fill in the points of D by simply rotating the set D
within S2 via σ−1. Conversely, if we have S2 we can erase the points of D by simply rotating D by
σ. That is, anything we can do to S2 \D we can also do to S2, and visa versa.

So, how does the decomposition go in the Banach-Tarski paradox? The idea is to take S2, rotate
D to get S2 \ D, apply the decomposition from before to get two copies of S2 \ D, and then on
each, rotate D by σ−1 and we get two copies of S2.

On the next page is a diagram to illustrate:
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S2

S2 \D

Wϕ tWϕ−1 tWψ tWψ tW0

Wϕ t ϕWϕ−1 Wψ t ψWψ−1

S2 \D S2 \D

S2 S2

The Banach-Tarski Paradox is given in a very specific form, namely that we need to divide up S2,
rotate some of the pieces, and then put them back together to get two copies of S2. What we’ve
just states is good, but it doesn’t give us explicit rotations that we can use to satisfy the statement
of the paradox. What this gives us is a partition which can be put back together to get two copies
of S2. It’s close, but not quite there. To complete this result for S2, we just have to do some
calculations and break up the S2 into a few more pieces than what we’ve shown. This will give
explicit rotations which compose to give the operation that we see in the diagram here. We note
here that it is possible to do this with only five pieces, but our proof will have to give a few more.

1.3 Completing the proof for S2

The problem with trying to pass of the above as suitable for the proof is that we need to account
for the portion of D which is not in D. Essentially, we’re using the same decomposition as before,
but we’re going to be careful about the points inside of D and those in S2 \ D.

So first of all, let’s write S2 in terms of D instead of D. Note first that:

S2 = [(S2 \D) ∩ (S2 \ D)] t σ−1[(S2 −D) ∩ D]

because S2 = (S2 \ D) t D and D = σ−1[(S2 \ D) ∩ D] and S2 \ D = [(S2 \ D) ∩ (S2 \ D)] (this
because D ⊂ D). Let’s use our decompositions of S2 \D from before to rewrite this. Remember
that

S2 \D = B0 tB−1ϕ tBϕ−1 tBψ tBψ−1

= Bϕ t ϕBϕ−1

= Bψ t ψBψ−1 .
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By substituting each of our three decompositions of S2 \D, we get:

S2 = [(S2 \D) ∩ (S2 \ D)] t σ−1[(S2 −D) ∩ D]

= [(B0 tB−1ϕ tBϕ−1 tBψ tBψ−1) ∩ (S2 \ D)] t σ−1[(B0 tB−1ϕ tBϕ−1 tBψ tBψ−1) ∩ D]

= [(Bϕ t ϕBϕ−1) ∩ (S2 \ D)] t σ−1[(Bϕ t ϕBϕ−1) ∩ D]

= [(Bψ t ψBψ−1) ∩ (S2 \ D)] t σ−1[(Bψ t ψBψ−1) ∩ D]

In order to account forD in all of the decompositions, we need to decompose each ofB0, Bϕ, Bϕ−1 , Bψ,
and Bψ−1 into the points inside of D and the points out of D. This way, we treat D on its own.
Furthermore, when we twist and put back together to get two copies of S2, we need to do the same
thing over again on Bϕ−1 and Bψ−1 , but with Dϕ and Dψ, repsectively.

Thus, we decompose B0, Bϕ and Bψ into:

B0 :B1
0 = B0 ∩ (S2 \ D)

B2
0 = B0 ∩ D

Bϕ :B1
ϕ = Bϕ ∩ (S2 \ D)

B2
ϕ = Bϕ ∩ D

Bψ :B1
ψ = Bψ ∩ (S2 \ D)

B2
ψ = Bψ ∩ D,

so B0 = B1
0 tB2

0 , and so on with Bϕ and Bψ.

In order to take into account the rotations by ϕ and ψ respectively, we’re going to have to split
Mϕ−1 and Mψ−1 into four pieces each, instaead of just two, as follows: We first split with regards
to D, and then split with regards to, respectively, Dϕ and Dψ.

Bϕ−1 :B11
ϕ−1 = Bϕ−1 ∩ (S2 \ D) ∩ (S2 \ D)ϕ−1

B12
ϕ−1 = Bϕ−1 ∩ (S2 \ D) ∩ Dϕ−1

B21
ϕ−1 = Bϕ−1 ∩ D ∩ (S2 \ D)ϕ−1

B22
ϕ−1 = Bϕ−1 ∩ D ∩ Dϕ−1

Bψ−1 :B11
ψ−1 = Bψ−1 ∩ (S2 \ D) ∩ (S2 \ D)ψ−1

B12
ψ−1 = Bψ−1 ∩ (S2 \ D) ∩ Dψ−1

B21
ψ−1 = Bψ−1 ∩ D ∩ (S2 \ D)ψ−1

B22
ψ−1 = Bψ−1 ∩ D ∩ Dψ−1

Thus Bϕ−1 = B11
ϕ−1 tB12

ϕ−1 tB21
ϕ−1 tB22

ϕ−1 , and likewise for Bψ−1 .
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Now, by just plugging in our decompositions and simplifying, we get the following equation:

S2 = B1
0 t σ−1B2

0 tB1
ϕ t σ−1B2

ϕ tB1
ψ t σ−1B2

ψ tB11
ϕ−1 tB12

ϕ−1t
σ−1B21

ϕ−1 t σ−1B22
ϕ−1 tB11

ψ−1 tB12
ψ−1 t σ−1B21

ψ−1 t σ−1B22
ψ−1

= ϕB11
ϕ−1 t (ϕσ−1)σB21

ϕ−1 t σ−1ϕB12
ϕ−1 t (σ−1ϕσ−1)σB22

ϕ−1 tB0
ϕ t σ−1B1

ϕ

= ψB11
ψ−1 t (ψσ−1)σB21

ψ−1 t σ−1ψB12
ψ−1 t (σ−1ψσ−1)σB22

ψ−1 tB0
ψ t σ−1B1

ψ

If you look carefully at these equations, you’ll see that they are giving the explicit rotations which
compose to form the transformation from S2 into two copies of S2 that we gave in the big diagram
before. This completes the proof of the Banach-Tarski Paradox for S2.
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