
(In)Correct Smart Contract Specifications
Derek Sorensen

Dept. of Computer Science and Technology
University of Cambridge

Cambridge, UK
ds885@cam.ac.uk

Abstract—Poorly specified smart contracts can be vulnerable to
attacks on faulty design. Formal methods are currently unable to
address these vulnerabilities because they are not vulnerabilities
of incorrect code, but of incorrect specification. We are thus
in need of a paradigm shift in how we specify and verify
smart contracts which allows for a rigorous and accurate notion
of a contract specification’s correctness. We submit that cor-
rectness includes appropriate cryptoeconomic behaviors, which
are generally out of scope of a contract’s specification. We
advocate for an approach to contract specification consisting of
contract axiomatization and metaspecification, and illustrate with
an example.

Index Terms—Formal verification, formal specification, smart
contract specification.

I. INTRODUCTION

Poorly specified smart contracts can be vulnerable to attacks
on faulty design [44]. Examples of such attacks, typically
targeting poor economic or governance design, are alarmingly
common, costing the equivalent of billions of US dollars in
cryptocurrency losses each year [12], [73].

The nature of these attacks means that they are rarely
targeted by formal methods, as faulty smart contracts can be
correct, only with regards to a faulty specification [15], [53].
Furthermore, many vulnerabilities relating to poor economic or
governance design are out of scope of a specification [20]. So,
while specifications attempt to target these properties, formal
verification engineers can only make informal arguments to
justify many design choices as correctly capturing the intended
properties and behaviors of the smart contract in question.

We are thus in need of a paradigm shift in how we specify
and verify smart contracts which allows for a rigorous and
accurate notion of a contract specification’s correctness, espe-
cially with regards to properties intended by it, but ultimately
out of its scope. We advocate for an approach to formal
contract specification with interactive theorem provers (ITPs),
consisting of axiomatization and metaspecification.

First, we note that for ITP-based verification, a complete
specification forms the basis for an axiomatized theory. This
is because a specification is a set of propositions which char-
acterize a contract’s design and structure. We can thus state
these propositions as a specification and study the behavior of
arbitrary contracts satisfying that specification. Importantly, to
reduce the burden of verifying any given contract, specifica-
tions should be minimal [66]. This is contract axiomatization.

From there we formally study the implications of a contract
specification via a metaspecification. The metaspecification is

to a specification what a specification is to an implementation.
It consists of meta properties, which are properties intended
by, but out of scope of, the contract specification, as well
as desired properties of the specification itself. For example,
we might include desired high-level (e.g. cryptoeconomic)
properties of a smart contract, or properties of a specification
like consistency or completeness [21]. A contract specifica-
tion’s correctness, then, depends on whether it conforms to its
metaspecification.

We make the specification-metaspecification distinction be-
cause the cost of formally verifying software can already be
prohibitive, and we wish to address issues of poor specification
in formal methods without unnecessarily augmenting the bur-
den of verification on any given smart contract. By treating the
specification as a contract axiomatization, we keep it minimal
while expanding the formal study of smart contract behavior,
adding to the security guarantees of formal methods without
increasing the burden of verifying a specific implementation
once the specification is formalized.

We present an initial framework of axiomatization and
metaspecification within ConCert [7], a Coq-based formal
verification tool which models the execution semantics of
third-generation blockchains and has custom Coq tactics for
proving contract invariants. The framework we propose is able
to incorporate properties of specifications in a way not previ-
ously done because ConCert models the execution semantics
of smart contracts within a formal model of a blockchain.
While it is possible to do similar analysis within other formal
settings, without the semantics of the underlying blockchain
formalized, we argue that any efforts to do so will eventually
encounter theoretical limits.

We proceed as follows. In Section II, we give historical
context to this problem and discuss related work. In Section
III, we discuss the problem of correct specification. In Section
IV we discuss our proposed framework of contract axiomatiza-
tion and metaspecification. In Section V, we illustrate with an
example financial smart contract. In Section VI, we justify this
paradigm as a solution to our issue of (in)correct specification.
In Section VII, we discuss limitations and future work. In
Section VIII, we conclude.

II. RELATED WORK

Limitations of formal methods are well-established [27],
[44], [60]. We know that formal methods cannot guarantee
perfect software [35], in part because of theoretical limits of a

causal model of a physical process [13], [26]. As such, formal
methods should be used in conjunction with other techniques
to ensure software security which compensate for limitations
inherent to formal methods [14], [37].

Design and formation of a specification has long been
considered in the domain of informal techniques, out of the
bounds of formal methods [33], [44]. The literature rightly
points out that the infrastructure required to reason about
software specification is vast. In order to reason about a
specification’s correctness, one must have a formal model of
its execution model and—intractibly for most software—the
social and ecological environment in which that software
operates and executes, consisting of different types of users
as well as society and the natural environment around them
[44]. The limitation of formal methods due to the difficulty of
forming a correct specification has been long recognized [33].

Even so, there have been efforts of varying formality to
address the issue of (in)correct specification. Firstly, it is
often argued that formalizing a specification alone, due to the
precision required, helps ensure a specification’s correctness
by clarifying details and preventing inconsistencies [14], [47].
Specification languages are also frequently designed to target
certain domain-specific properties in order to ease the transla-
tion between prose and formal specification [61].

There is also emerging work which attempts to formally
justify the correctness of a contract specification. For example,
one study tests the strength of a contract specification by
mutation testing to identify any pathological yet correct (per
the specification) behavior of Ethereum smart contracts [54].
Similarly, the developers of a formally verified stablecoin,
Djed, used techniques such as mutation and unit testing to
identify potentially pathological behavior of the specification.
They then targeted these behaviors with formal verification, in
Isabelle and using SMT solvers, to justify the robustness of
the contract specification [70].

These are good examples of developers considering the
correctness of their specifications, but crucially the properties
they proved about these specifications are articulated and
proved ad hoc. Testing and intuition ground the conceptual
framework from which they derive the results to be proved. In
particular, they are not derived systematically via a theory of
some kind. Without a systematic framework, one has no notion
of completeness—whether the propositions proved about a
specification are sufficient to guarantee it to be correct.

Finally, there are some verification efforts which take a
stronger theoretical approach to smart contract specifications,
but these do not reason about deployable or executable
code. Consulting and auditing firms such as Gauntlet [2]
and 20squares [1] perform statistical, economic, and game-
theoretic analysis on contract specifications [11], [32], but
crucially such analyses are not present in any setting of formal
verification.

Our work is to lay the theoretical foundations for a sys-
tematic framework, that can evaluate the correctness of a
smart contract specification based on cryptoeconomic analysis,
and which brings a high-level approach of cryptoeconomic

reasoning into a setting of verification on contracts which
can be deployed and executed. The purpose of this work is
to improve the efficacy of formal methods against attacks
on poor cryptoeconomic design. We do so in ConCert, a
Coq-based tool for smart contract verification which models
the execution semantics of third-generation blockchains [7]
and features verified extraction to multiple third-generation
blockchains [6].

Because ConCert models the execution semantics of a
blockchain in an ITP, it is a particularly strong choice for
reasoning about the properties of contract specifications. In
particular, we argue that it is possible to embed a cryptoe-
conomic theory into ConCert with which one can reason,
from first principles, about smart contract behavior and derive
properties of the contract metaspecification.

III. THE PROBLEM OF (IN)CORRECT SPECIFICATION

Contract specifications almost never feature economic prop-
erties, despite the fact that the primary use case for smart
contracts is as economic or financial infrastructure. Instead,
the specifier goes through an informal translation process from
a high-level, informal business or economic specification into
a technical specification [62]. This informal process can be
erroneous, resulting in a specification that fails to capture
the intended cryptoeconomic properties and contract behav-
iors—in other words, an incorrect specification.

Consider the specification of an automated market maker
(AMM). From its inception, its design is to facilitate an
efficient market, with efficient price discovery [18]. Bonding
curves, e.g. the first and most fundamental

xy = k, (1)

were put forward from classical economics as having desirable
market properties. However, reading through the specification
of an AMM—take for example Dexter2 [8], a Tezos-based
AMM, its formal counterparts [19], [41], [49], or a generic
formal specification for AMMs using the bonding curve (1)
[72]—does little to convince us that the resulting smart
contracts do indeed exhibit the desired high-level, economic
properties of an efficient market-maker.

This is because contract specifications tend to be low-
level in nature, focusing on contract interface, storage, and
functional descriptions of entrypoint functions. High-level,
cryptoeconomic properties are assumed to emerge from the
specification, but they are difficult to formally justify. For some
examples of such properties, properly incentivizing liquidity
providers with fees, without disrupting other cryptoeconomic
features of the AMM, is a highly complex topic [4], [25],
[28], [29], [36], and not at all obvious to be correct from a
typical contract specification. Indeed, assurances of desirable
cryptoeconomic behavior for AMMs using the bonding curve
(1) were largely provided after the original Uniswap contracts
were specified and deployed, e.g. in [5].

We can see that smart contract developers ubiquitously
use an informal translation process, from high-level cryp-
toeconomic or business logic to a technical specification,

to specify their smart contracts. In contrast to Uniswap, a
resounding success, many instances of contract specification
result in catastrophic losses due to incorrect design. Examples
include Beanstalk [24], Mango Markets [46], [56], the Spartan
Protocol [17], [40], Pancake Bunny [16], [34], [38], [50], and
a seemingly countless stream of others [12], [73].

Frustratingly, aside from the benefits of producing a formal
specification, formal methods are of limited use to resolve
these vulnerabilities because they are not vulnerabilities of
incorrect code, but of incorrect specification. Since formal
methods are an important avenue toward high-assurance soft-
ware, and are of particular relevance to smart contracts due
to contract immutability [11], [62], we are in need of a
paradigm shift in how we specify and verify smart contracts
in order to adequately address vulnerabilities due to incorrect
specification.

Our goal in this and future work is to develop rigorous
tools for reasoning about the correctness of smart contract
specifications in an ITP-based formal setting. In this paper,
we will focus on this problem as it relates to a contract’s
cryptoeconomic properties. We call a contract specification
correct if any contract satisfying that specification also exhibits
the associated and desired cryptoeconomic properties. The
framework that we put forward is one of contract axioma-
tization and metaspecification.

IV. CONTRACT AXIOMATIZATION AND
METASPECIFICATION

The essential idea of contract axiomatization and metaspec-
ification is to specify a contract’s essential features in its spec-
ification (a contract axiomatization) and then to formally study
the implications, cryptoeconomic or otherwise, of that spec-
ification via the metaspecification. This isolates the minimal
conditions that must be true of a contract from the properties
and behaviors that necessarily follow, emulating mathematical
reasoning. Importantly, this allows us to minimize the size
of a contract specification, and thus the burden of formally
verifying any particular implementation, while improving our
understanding of that contract’s cryptoeconomic behavior.
Formal specifications remain low-level and technical in nature,
but through the metaspecification we are able to express and
reason about the high-level, cryptoeconomic properties of the
specification.

A. Contract Axiomatization

An effective specification abstracts the essential pieces of
a contract’s design and interface. It should be consistent
(unambiguous) and complete (fully descriptive of contract
behavior) [21], [66]. In particular, we should be able to deduce
the outputs of any contract call by the specification, given the
inputs. If it is well-defined in an ITP, a formal specification
should be able to be stated as a predicate on smart contracts.
In ConCert, the contract type is parameterized by a contract’s
setup, message, state, and error types, and a specification S

then has the following form:

S : forall (C : Contract Setup Msg State

Error), Prop.

The art of specification holds a tension between saying
enough, so that implementers do not choose unacceptable
implementations, and not saying too much, which can limit the
design freedom of the implementer [66]. From the perspective
of formal methods, there is further pressure to make the
specification as concise as possible, since formal verification
is difficult and costly due to the expertise required [67].

For ITP-based verification, we can see right away that a
specification, a list of propositions we might hope to prove
about a particular implementation, mimics the practice of
axiomatization in mathematical theories [45]. For example,
in mathematics a group is defined by a set of axioms: it
is a set, with an associative operation, an identity element,
and inverses [71]. Given a set with an operation, one can
prove or disprove whether or not that set conforms to the
axioms of a group by proving the operation to be associative,
demonstrating inverses, and producing the identity.

We can make an analogy, where the axioms defining a group
are the analogue to a specification, and any particular group
is analogous to a specification-compliant implementation. In-
deed, in ITP-based verification, these are in actuality the same
practice: a specification is a list of propositions (axioms),
and an implementation is a well-defined mathematical object
which may or may not satisfy those propositions.

We might, then, resolve the tension of specification in
an ITP-based formal setting as mathematicians do: study,
refine, and minimize the required axioms (specification) by
proving theorems about the axioms and studying their formal
implications. For this, we have the metaspecification.

B. Metaspecification

Given a specification, its metaspecification is a set of prop-
erties either of the specification itself or of the implications
of that specification. They are typically properties intended
by, but out of scope of, the specification—hence their name
meta properties. For example, one can prove the specification
to be consistent by providing a specification-compliant imple-
mentation [66]. Proving completeness is more nuanced, as we
need to justify that the specification (axiomatization) correctly
captures the intended behaviors.

To do so, we study the implications of a specification.
Given a specification S, stated as a predicate on contracts,
we consider an arbitrary contract C and a proof

C_conforms_to_S : S(C).

By assuming only the witness C_conforms_to_S in our con-
text, any theorems we prove apply to all contracts satisfying
the specification S.

A specification’s correctness depends on whether it actually
exhibits the intended meta properties. As we will see by
example in the upcoming section, a metaspecification can
include desired, high-level cryptoeconomic properties. Impor-
tantly, proving properties via the metaspecification does not

add to the burden of verifying any given implementation, since
by definition contracts conforming to a correct specification
automatically inherit all the properties of the metaspecification.

For example, consider the standard specification of an
ERC20 token contract [51], [63], which defines contract
storage, interface, and functionality for a basic token contract.
In addition to this standard, every token contract has an as-
sociated tokenomics, which includes rules governing minting,
burning, token issuance or buy-backs, maximum supply, etc
[30]. A token contract’s tokenomics are essential to its correct
functionality, since tokens typically attempt to capture value
of some kind or regulate the functionality of some other smart
contract, e.g. the governance tokens for a DAO [65], or the LP
tokens for an AMM [68].

Within the framework of axiomatization and metaspecifica-
tion, we can study a token contract specification by formalizing
it as a predicate P on contracts and then stating and proving
properties relevant to its tokenomics. The specification mini-
mally includes specific rules governing minting and burning,
including a maximum supply of tokens (if any). The metaspec-
ification then might include some set of game-theoretic or
incentive-based rules governing minting and burning hold, e.g.
as articulated in [9], proving that the token contract conforms
to some given tokenomics. Since the specification languages
for ITP-based verification can state arbitrary properties, in
principle we could state and attempt to prove anything we
wish [55].

Indeed, we might wish to formalize a theory of DeFi and
AMMs, a formal counterpart of previous work on the subject
by Bartoletti et al. [10] and Angeris et al. [5]. Bartoletti et
al. formally derive and prove desirable, high-level, economic
properties of AMMs via a labelled state transition system. This
work targets the so-called arbitrage problem, formally proving
that the pricing functions of Uniswap-style AMMs respond,
from an economic point of view, appropriately to market
actions by rational arbitrageurs. In particular, this is a property
explicitly aimed for by the earliest AMM specifications (e.g.
[18]) for the sake of market efficiency, but to our knowledge
has never actually featured in an AMM’s specification.

By way of an illustrating example in the following sec-
tion, our argument is that ITP-based formal methods should
consider smart contracts analogously to axiomatized, math-
ematical objects. Returning to the mathematical analogy, in
mathematics, like in formal specification, a set of axioms
must be consistent, in that they do not imply a contradiction,
and complete, in that they correctly characterize the intended
mathematical phenomenon [52]. That the group axioms are
correct is confirmed by the emergent behavior of groups,
explored mathematically through the resulting theory. Im-
portantly, the axioms of groups were carefully chosen to
say enough to capture the intended mathematical structure
without overspecifying—precisely the same tension exhibited
in specification. To this end we proceed with an example of a
formalized AMM specification and metaspecification.

V. EXAMPLE: FORMALIZING STRUCTURED POOLS

We illustrate the process and utility of axiomatization and
metaspecification with a specific AMM contract. We have
formalized1 the specification and metaspecification of a struc-
tured pool contract [57], an AMM designed to pool and
trade tokenized carbon credits [58]. We also verify the formal
specification to be correct with regards to a metaspecification
consisting of cryptoeconomic properties. Aside from show-
ing the AMM specification to exhibit desirable, high-level
cryptoeconomic properties, we also show that parts of the
formal specification can only be derived in reference to the
metaspecification.

A. The Formal Specification, or Contract Axiomatization

The structured pool specification, given in mathematically
precise detail in [57], is an AMM specification split in three
parts: contract storage, interface, and entrypoint functions. The
first two are type specifications, which we handle in Coq
by way of typeclasses. The last are functional specifications,
which we can write using pre- and post-conditions. The formal
specification can then be summarized into a predicate on an
arbitrary contract C,

is_structured_pool : forall C, Prop.

A proof of is_structured_pool indicates that the storage,
interface, and entrypoint functions of C all conform to the
specification.

1) Storage: According to the specification, contract storage
must contain the following data: exchange rates for each
constituent token (used for pooling and trading rates), the
quantity of each token held in the pool, the address of the pool
token contract, and the number of outstanding pool tokens. We
can specify this by using a Coq typeclass, requiring that the
storage type of a structured pool contract have functions which
reveal each of these data points.

Class State_Spec (T : Type) := {
(* the exchange rates *)
stor_rates : T → FMap token exchange_rate ;
(* token balances *)
stor_tokens_held : T → FMap token N ;
(* pool token data *)
stor_pool_token : T → token ;
(* number of outstanding pool tokens *)
stor_outstanding_tokens : T → N ;

}.

Listing 1. The formal typeclass characterizing the storage type.

2) Interface: The interface consists of at least three en-
trypoints: POOL, UNPOOL, and TRADE. These are for pooling
liquidity, withdrawing (unpooling) liquidity, and trading indi-
vidual carbon credits, respectively. We formalize the payload
data for each entrypoint into three types:

• pool_data, the payload type for POOL,
• unpool_data, the payload type for UNPOOL,
• trade_data, the payload type for TRADE, and

1For the full formalization, see https://tinyurl.com/fincert-structured-pool.

• other_entrypoint, an abstract type representing one,
many, or no additional entrypoints.

The typeclass characterizing the interface then requires that
each of these types are legitimate payload types.

Class Msg_Spec (T : Type) :=
build_msg_spec {
pool : pool_data → T ;
unpool : unpool_data → T ;
trade : trade_data → T ;
(* any other potential entrypoints *)
other : other_entrypoint → option T ;

}.

Listing 2. The typeclass characterizing the interface type.

We also require that these be exhaustive, simulating the
interface as an inductive type.

Definition msg_destruct contract :=
forall (m : Msg),
(exists p, m = pool p) ∨
(exists u, m = unpool u) ∨
(exists t, m = trade t) ∨
(exists o, Some m = other o).

Listing 3. The payload of any legitimate contract call is the image of one
of: pool, unpool, trade, or other.

3) Entrypoint Functions: Entrypoint functions are charac-
terized with functional specifications. There are twenty-four
properties of the full entrypoint specification, encoded as
propositions. Some of the key properties are:

1) pool_increases_tokens_held, which states that a
successful call to POOL increases the tokens pooled,

2) unpool_decreases_tokens_held, which states that
a successful call to UNPOOL decreases the tokens pooled,

3) trade_pricing_formula, which specifies the for-
mula used to price trades, and

4) trade_update_rates_formula, which specifies how
exchange rates update in response to trades.

Numbers 3 and 4 listed above are parameterized by functions
that calculate trades and update exchange rates, respectively
calc_delta_y and calc_rx’. This is all we need to fully
specify the AMM in question, but there are two ambiguities
in the formal specification which can only be clarified by the
metaspecification.

The first relates to how trades are priced, specified in the
pricing formula of trade_pricing_formula. As is typical
in prose specifications of AMMs that price trades along a
convex curve, or indeed for any financial contract involving
mathematical calculations, the structured pool specification
does arithmetic in rational or real numbers. However, any
implementation necessarily uses arithmetic with natural num-
bers which estimate rational or real numbers (typically at 6
or 9 decimal points of precision) [59]. We must decide, then,
whether to estimate from above, below, or some combination
of the two depending on the context. At the heart of the
question is how to estimate the calculations in such a way
that all the desired cryptoeconomic behaviors of the contract
are satisfied. This is thus a question for the metaspecification.

The second is the functional specification of the other

entrypoint, which is a placeholder in the specification for
any entrypoints other than the three explicitly specified. The
structured pool specification allows for other entrypoints, but
none that fundamentally change the functionality of the con-
tract. However, this is only an intuitive requirement, difficult
to formalize. From the specification it is not obvious what
functionality is and is not permitted of any other entrypoints.
We must restrict the other entrypoint so that any additional
entrypoints, whether they be to add a governance layer or
something more inocuous like an entrypoint for updating meta-
data, do not sabotage the contract’s correct cryptoeconomic
behavior. Again, we can answer this within the context of
the metaspecification, enabling us to give a precise functional
specification of the other entrypoint.

B. The Formal Metaspecification

The metaspecification consists of six cryptoeconomic prop-
erties derived from previous work which elucidate desirable
economic behavior of AMMs [3], [5], [10], [69]. The proper-
ties we have formalized here are those proved in the original,
informal AMM specification [57], and are designed to justify
the AMM specification to be cryptoeconomically correct.
Informally, these are:

1) Demand sensitivity: in a trade, the relative price of the
token traded in decreases, and that of the token being
traded out increases, simulating the principle of supply
and demand from classical economics.

2) Nonpathological prices: the price of an asset can never
reach zero or go negative.

3) Swap rate consistency: trading cost must be nonnegative,
so that it is impossible to make a sequence of calls to the
TRADE entrypoint and output more in assets than were
traded in initially.

4) Zero-impact liquidity change: pooling or unpooling to-
kens (depositing or withdrawing liquidity) must not
affect trade prices.

5) Arbitrage sensitivity: if the price of a token differs on
an external AMM from this one, a rational arbitrageur
will either equalize the prices by trading, or drain the
structured pool of that token.

6) Pooled consistency: the total value of the outstanding
pool tokens is equal to the value of the pool.

Together, these properties are designed to encapsulate the
intended cryptoeconomic behavior for this AMM [57]. In
particular, demand and arbitrage sensitivity target the desired
property that the AMM facilitate an efficient (i.e. price-
finding) market. Swap rate consistency ensures that there are
no arbitrage opportunities internal to the AMM itself. Pooled
consistency and nonpathological prices are the invariants of
the contract state, while the rest pertain to specific entrypoint
functions. To illustrate, see the formalized statements of prop-
erties 2 (nonpathological prices) and 6 (pooled consistency)
in listings 4 and 5, respectively. The correspondence between
Coq code and prose is illustrated in the comments.

Theorem nonpathological_prices bstate caddr :
(* Forall reachable states with

our contract at the address caddr, *)
reachable bstate →
env_contracts bstate caddr =
Some (contract : WeakContract) →
(* ... where contract state is cstate, *)
exists (cstate : State),
contract_state bstate caddr = Some cstate ∧
(* For a token t_x in T and rate r_x, *)
forall t_x r_x,
(* if r_x is the exchange rate of t_x,
then r_x > 0 *)

FMap.find t_x (stor_rates cstate) =
Some r_x → r_x > 0.

Listing 4. The formalization of Property 2, Nonpathological Prices.

Theorem pooled_consistency bstate caddr :
reachable bstate →
env_contracts bstate caddr =
Some (contract : WeakContract) →
exists (cstate : State),
contract_state bstate caddr = Some cstate ∧
(* The sum of all the constituent,

pooled tokens, multiplied by
their value in terms of pooled tokens,
always equals the total number of
outstanding pool tokens. *)

suml (tokens_to_values
(stor_rates cstate)
(stor_tokens_held cstate)) =

(stor_outstanding_tokens cstate).

Listing 5. The formalization of Property 6, Pooled Consistency.

To our knowledge, these types of economic properties
do not feature in any other contract specifications, informal
or formal, but as we have pointed out they are critical to
evaluating the correctness of the specification with respect to
our cryptoeconomic intent. That they are formally verified to
be true of the structured pool specification assures us that the
design itself is correct. Importantly, any contract satisfying
the functional specification of Section V-A also satisfies these
economic properties without requiring any further proofs.

Furthermore, the two ambiguities in the formal specification
of Section V-A can only be clarified in the context of the
specification’s cryptoeconomic properties. These are: verify-
ing the pricing formulae to be correct using natural-number
arithmetic, rather than rational or real numbers; and formally
specifying minimal requirements on any additional entrypoints
such that the economic properties of the metaspecification are
not violated. We expound on both.

1) Rational to natural-number arithmetic: The aspects of
the informal specification [57] which require the metaspecifi-
cation due to the fact that smart contracts use natural-number,
rather than rational, arithmetic are these: first, how trades are
priced, and second, how token exchange rates are updated
by trades. Both of these implicitly use properties of rational
numbers which are not true of natural numbers: that between

0 and any positive rational number r, there are infinitely many
rational numbers, and that every nonzero rational number has
an inverse. See in particular Section 3 and Figure 1 of the
structured pool specification [57], which specifies how trades
are to be calculated.

Because any implementation necessarily uses natural num-
bers for arithmetic, in the formal, functional specification
of the trade and exchange rate functions we must decide
which properties of rational arithmetic must be preserved
in our formalization into natural-number arithmetic. In the
structured pool’s formal specification, this resulted in seven
formal properties on the abstract functions calc_delta_y

and calc_rx’ which are, respectively, the functions that
price trades and update token exchange rates (see Listing 6).
These include theoretical bounds on trade slippage, exchange
rates, and that there be no theoretical upper bound on the
output of trades. The specification allows for any pricing and
rate-updating formulae which conform to those seven formal
properties.

(* ... *)
(* specification of calc_rx’, calc_delta_y *)
update_rate_stays_positive ∧
rate_decrease ∧
rates_balance ∧
rates_balance_2 ∧
trade_slippage ∧
trade_slippage_2 ∧
arbitrage_lt ∧
arbitrage_gt ∧
(* ... *)

Listing 6. An exerpt of the formal specification of a structured pool contract
consisting of the required properties of calc_rx’ and calc_delta_y.

Importantly, this shows that the solutions to issues such
as rounding errors in calculating trades and exchange rates
have solutions from within a cryptoeconomic context. This is
particularly relevant considering recent costly attacks due to
rounding error in smart contracts, e.g. DFX Finance [39] and
KyberSwap [22].

2) Specifying the other entrypoint: The metaspecification
also governs the behavior of any additional entrypoints, such as
one for a governance mechanism or something more inocuous
like for updating metadata. Two properties—nonpathological
prices and pooled consistency—are high-level invariants of
the contract, in contrast with the other properties of the
metaspecification which are entrypoint-specific. In particular,
they are the only invariants on contract state, so they dictate
the admissible behavior of any additional entrypoint: We
retain the desired cryptoeconomic behavior of our AMM so
long as no additional entrypoint does not push prices to a
nonpositive value, or make the total value of outstanding
pool tokens unequal to the value of the pool. For example, a
specification that requires that any additional entrypoints not
alter rates, token balances, or outstanding pool tokens satisfies
the metaspecification, though the metaspecification may allow
for more varied entrypoint behavior.

(* ... *)
(* specification of all other entrypoints *)

other_rates_unchanged C ∧
other_balances_unchanged C ∧
other_outstanding_unchanged C ∧
(* ... *)

Listing 7. An exerpt of the formal specification of a structured pool contract
consisting of the required properties of any additional, unspecified entrypoint.

VI. (IN)CORRECT CONTRACT SPECIFICATIONS

From our example we can observe various benefits to
formalizing contract specifications and metaspecifications.

1) Formally specifying the high-level properties intended
by the specification gives the benefits of clarity and rigor
inherent to formalization, analogous to the benefits of
formalizing a specification on an implementation.

2) The metaspecification can inform, and evolve with, the
specification, just as the specification does with an
implementation.

3) Choices inevitably made when formalizing a specifica-
tion can be proved correct with reference to a metaspec-
ification.

4) Once formalized, the metaspecification adds to the se-
curity guarantees of the formal specification without in-
creasing the burden of formally verifying any particular
implementation, since an implementation proved correct
with regards to the specification inherits the properties of
the metaspecification without requiring additional proof.

In particular, the metaspecification achieves our goal to
develop rigorous tools for reasoning about the correctness of
smart contract specifications in an ITP-based formal setting: It
forces us to formalize the contract specification as a standalone
mathematical object, and then to clearly and formally articulate
the intended properties of the specification and contract design.

This example also gives us an initial evaluation metric
on the efficacy of a metaspecification to prevent attacks on
poor cryptoeconomic design. As we mentioned before, any
smart contract facilitating trades must inevitably round when
pricing trades. Correct rounding is actually a hard problem
and has lead to many vulnerabilities in smart contract design.
The industry rule of thumb is to round in favor of the smart
contract, but even that breaks sometimes and can be a source of
catastrophic loss. In our example, the metaspecification fully
clarified which way to round when implementing the pricing
function. Indeed, the answer to this engineering question is
inevitably rooted in the desired cryptoeconomic behavior.

Even so, any genuine evaluation on the efficacy of a
metaspecification to prevent attacks on poor cryptoeconomic
design will depend on the sophistication with which we are
able to state and verify cryptoeconomic properties, which leads
us to current limitations and future work.

VII. LIMITATIONS AND FUTURE WORK

The example given here is preliminary and illustrative. In or-
der to more fully realize these benefits we should lay stronger
foundations from which to derive desirable cryptoeconomic
properties of smart contracts. We might also consider similar
work in other formal settings.

A. Formal Theories of DeFi and AMMs

We mentioned before that substantial work has already
been done to develop theories of DeFi and AMMs. The
metaspecification of this paper was informed by the work of
Angeris et al. [3], [5], Bartoletti et al. [10], and Xu et al.
[69] to characterize the desirable cryptoeconomic properties
of AMMs which price trades along a convex curve. However,
rather than rigorously deriving them from within a theory if
DeFi and AMMs embedded into ConCert, we formalized the
statements of the metaspecification ourselves. The process of
metaspecification could be made more rigorous if we had a
formalized theory of DeFi and AMMs from which to derive
our desired cryptoeconomic properties.

The cited studies are not the only attempts to systematically
study the cryptoeconomic behavior of blockchains and smart
contracts. There is a growing literature on cryptoeconomics
more generally, e.g. [42], [43], [64]. We are hopeful that the
growing literature will provide strong, theoretical foundations
of cryptoeconomics which can be applied to specification
design and verification.

To aid in the rigorous formation of contract metaspecifica-
tions, we hope to start from first principles and develop a Coq-
native cryptoeconomic theory in ConCert, which fomralizes
token and AMM primitives as abstract specifications [10], and
operations for owning, transferring, and trading resources [15].
This is doable in ConCert because it models the semantics of a
blockchain embedded in Coq, and so arbitrary theories can be
constructed, including those that reason about the cryptoeco-
nomic incentives relating to the blockchain itself. From such a
theory we could make a formal study of cryptoeconomics, and
provide strong foundations for contract metaspecifications.

B. Extensions to other Formal Settings

Most ITP-based smart contract verification tools only pro-
vide an embedding of the smart contract language [31], [48],
[61]. There would be no issue in stating the meta properties
that we gave in Section V in these settings, since we did
not meaningfully draw on the semantics of the blockchain to
derive the statements. However, since we know that the incen-
tives of block producers have an effect on the cryptoeconomic
security of blockchains [23], any verification pipeline which
does not model the semantics of an executing blockchain has
inevitable limitations with regards to the cryptoeconomic meta
properties of a smart contract that it is able to state and verify.
Future work might also include making a formal study of the
limits of these language embeddings with regards to contract
meta properties.

VIII. CONCLUSION

Poorly specified smart contracts are vulnerable to attacks
on faulty design for which formal methods typically have
no answer. We are in need of a paradigm shift in how we
specify and verify contracts so that we can rigorously consider
a contract specification’s correctness.

We propose a framework for formal specification in inter-
active theorem provers consisting of contract axiomatization

and metaspecification. This framework treats contracts as well-
defined mathematical objects, and contract specifications as
the axiomatization of a mathematical theory. Our aim was
to increase the expressiveness and rigor of ITP-based formal
methods, enabling the expression and verification of meta
properties.

We illustrated with an example, formal specification of
an AMM. Not only were we able to describe high-level,
cryptoeconomic properties that target market efficiency and
arbitrage, but we showed that a metaspecification can shed
light on choices made in the formalization of the specification
and justify their correctness.

We hope that this work leads to a more rigorous and
formal understanding of the cryptoeconomic properties of
smart contracts, which in turn can help us mitigate the near-
ubiquitous cryptoeconomic vulnerabilities in contract design.

REFERENCES

[1] 20squares. https://20squares.xyz/. Accessed December 2023.
[2] Gauntlet. https://www.gauntlet.xyz/. Accessed December 2023.
[3] Guillermo Angeris, Akshay Agrawal, A. Evans, T. Chitra, and Stephen P.

Boyd. Constant Function Market Makers: Multi-Asset Trades via
Convex Optimization. 2021.

[4] Guillermo Angeris, Tarun Chitra, and Alex Evans. When Does The
Tail Wag The Dog? Curvature and Market Making. Cryptoeconomic
Systems, 2(1), June 2022.

[5] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and
Tarun Chitra. An Analysis of Uniswap markets. Cryptoeconomic
Systems, 0(1), April 2021.

[6] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters.
Extracting smart contracts tested and verified in Coq. In Proceedings of
the 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2021, pages 105–121, New York, NY, USA, January
2021. Association for Computing Machinery.

[7] Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. ConCert:
A smart contract certification framework in Coq. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, pages 215–228, New York, NY, USA, January 2020.
Association for Computing Machinery.

[8] b. Dexter2 Specification. https://gitlab.com/dexter2tz/dexter2tz/-
/blob/master/docs/informal-spec/dexter2-cpmm.md. Accessed Novem-
ber 2023.

[9] Julian Barreiro-Gomez and Hamidou Tembine. Blockchain token
economics: A mean-field-type game perspective. IEEE Access, 7:64603–
64613, 2019.

[10] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente.
A Theory of Automated Market Makers in DeFi. In Ferruccio Damiani
and Ornela Dardha, editors, Coordination Models and Languages, Lec-
ture Notes in Computer Science, pages 168–187, Cham, 2021. Springer
International Publishing.

[11] Chaı̈maa Benabbou and Önder Gürcan. A survey of verification,
validation and testing solutions for smart contracts. In 2021 Third
International Conference on Blockchain Computing and Applications
(BCCA), pages 57–64. IEEE, 2021.

[12] Beosin. Global Web3 Security Report 2022. https://medium.com/
Beosin com/beosin-global-web3-security-report-2022-7aa2e4bb13. Ac-
cessed November 2023.

[13] Daniel M Berry. Formal methods: the very idea: Some thoughts about
why they work when they work. Science of computer Programming,
42(1):11–27, 2002.

[14] J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods.
Computer, 28(4):56–63, 1995.

[15] Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, and Alexan-
der J Summers. Rich specifications for ethereum smart contract
verification. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1–30, 2021.

[16] BscScan.com. Pancake Bunny Exploiter.
Address 0x158c244b62058330f2c328c720b072d8db2c612f, 2021.

[17] BscScan.com. Spartan Protocol Exploit.
Transaction 0xb64ae25b0d836c25d115a9368319902c972a0215bd108ae
17b1b9617dfb93af8, 2021.

[18] Vitalik Buterin. Improving front running resistance of x*y=k market
makers - Decentralized exchanges. https://ethresear.ch/t/improving-
front-running-resistance-of-x-y-k-market-makers/1281, March 2018.
Accessed November 2023.

[19] Raphael Cauderlier. Dexter2 Specification (Mi-Cho-
Coq). https://gitlab.com/nomadic-labs/mi-cho-coq/-/blob/dexter-
verification/src/contracts coq/dexter spec.v. Accessed November
2023.

[20] Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila
Galanopoulou, Arthur Gervais, Dimitris Mitropoulos, and Benjamin
Livshits. Smart Contract and DeFi Security Tools: Do They Meet
the Needs of Practitioners? In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, pages 1–13, 2024.

[21] J Craig Cleaveland. Mathematical specifications. ACM SIGPLAN
Notices, 15(12):31–42, 1980.

[22] Tim Copeland. Dex protocol kyberswap appears to lose $47 million
in possible exploit. https://www.theblock.co/post/264432/dex-protocol-
kyberswap-appears-to-lose-47-million-in-possible-exploit. Accessed De-
cember 2023.

[23] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash Boys 2.0:
Frontrunning in Decentralized Exchanges, Miner Extractable Value, and
Consensus Instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927, May 2020.

[24] etherscan.io. Beanstalk Exploit.
Transaction 0xcd314668aaa9bbfebaf1a0bd2b6553d01dd58899c508d472
9fa7311dc5d33ad7.

[25] Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal Fees for
Geometric Mean Market Makers. In Financial Cryptography and Data
Security. FC 2021 International Workshops, Lecture Notes in Computer
Science, pages 65–79, Berlin, Heidelberg, 2021. Springer.

[26] James H Fetzer. Program verification: The very idea. Communications
of the ACM, 31(9):1048–1063, 1988.

[27] Luciano Floridi. The Blackwell guide to the philosophy of computing
and information. John Wiley & Sons, 2008.

[28] Robin Fritsch and Roger Wattenhofer. A Note on Optimal Fees for
Constant Function Market Makers. DeFi@CCS, 2021.

[29] Robin Frtisch, Samuel Käser, and Roger Wattenhofer. The economics of
automated market makers. In Proceedings of the 4th ACM Conference
on Advances in Financial Technologies, pages 102–110, 2022.

[30] Jingxing Gan, Gerry Tsoukalas, and Serguei Netessine. Decentralized
platforms: Governance, tokenomics, and ico design. Management
Science, 2023.

[31] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. A
Survey on Formal Verification for Solidity Smart Contracts. In 2021
Australasian Computer Science Week Multiconference, ACSW ’21,
pages 1–10, New York, NY, USA, February 2021. Association for
Computing Machinery.

[32] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Com-
positional game theory. In Proceedings of the 33rd annual ACM/IEEE
symposium on logic in computer science, pages 472–481, 2018.

[33] Joseph A Goguen. More thoughts on specification and verification. ACM
SIGSOFT Software Engineering Notes, 6(3):38–41, 1981.

[34] Samuel Haig. PancakeBunny tanks 96% following $200M flash loan ex-
ploit. https://cointelegraph.com/news/pancakebunny-tanks-96-following-
200m-flash-loan-exploit, May 2021.

[35] Anthony Hall. Seven myths of formal methods. IEEE software, 7(5):11–
19, 1990.

[36] Lioba Heimbach, Ye Wang, and Roger Wattenhofer. Behavior of
Liquidity Providers in Decentralized Exchanges. arXiv:2105.13822,
October 2021.

[37] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,
Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons,
Sergiy Vilkomir, Martin R. Woodward, and Hussein Zedan. Using
formal specifications to support testing. ACM Comput. Surv., 41(2),
feb 2009.

[38] Igor Igamberdiev (@FrankResearcher). BUNNY Exploit Report.
https://twitter.com/FrankResearcher/
status/1395196961108774915, May 2021. Accessed November 2023.

[39] Immunefi. Dfx finance rounding error bugfix review.
https://medium.com/immunefi/dfx-finance-rounding-error-bugfix-
review-17ba5ffb4114. Accessed December 2023.

[40] PeckShield Inc. The Spartan Incident: Root Cause Analy-
sis. https://peckshield-94632.medium.com/the-spartan-incident-root-
cause-analysis-b14135d3415f, May 2021. Accessed November 2023.

[41] Runtime Verification Inc. Dexter2 Specification (K Framework).
https://github.com/runtimeverification/michelson-semantics/blob/a46be
4a542e01b17a93134395c889df1468a067b/tests/proofs/dexter/dexter-
spec.md. Accessed November 2023.

[42] Daniel Kirste, Niclas Kannengießer, Ricky Lamberty, and Ali Sunyaev.
How automated market makers approach the thin market problem in
cryptoeocnomic systems. arXiv preprint arXiv:2309.12818, 2023.

[43] Samela Kivilo. Designing a Token Economy: Incentives, Governance
and Tokenomics. PhD thesis, 06 2023.

[44] Ralf Kneuper. Limits of formal methods. Formal Aspects of Computing,
9:379–394, 1997.

[45] Barbara Liskov and Stephen Zilles. Specification techniques for data
abstractions. In Proceedings of the international conference on Reliable
software, pages 72–87, 1975.

[46] Shaurya Malwa. How Market Manipulation Led to
a $100M Exploit on Solana DeFi Exchange Mango.
https://www.coindesk.com/markets/2022/10/12/how-market-
manipulation-led-to-a-100m-exploit-on-solana-defi-exchange-mango/,
October 2022.

[47] Paul R. McMullin and John D. Gannon. Combining testing with
formal specifications: A case study. IEEE Transactions on Software
Engineering, (3):328–335, 1983.

[48] Yvonne Murray and David A. Anisi. Survey of Formal Verification
Methods for Smart Contracts on Blockchain. In 2019 10th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS), pages 1–6, June 2019.

[49] Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising
Decentralised Exchanges in Coq. In Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
pages 290–302, 2023.

[50] pancakebunny.finance (@PancakeBunnyFin). BUNNY Exploit Report.
https://twitter.com/Pancake
BunnyFin/status/1395173389208334342, May 2021. Accessed Novem-
ber 2023.

[51] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore
Roşu. A formal verification tool for ethereum vm bytecode. In
Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, pages 912–915, 2018.

[52] Charles Parsons. Informal axiomatization, formalization and the concept
of truth. Synthese, pages 27–47, 1974.

[53] Macauley Peterson. Latest DeFi exploits show audits are no guar-
antee. https://blockworks.co/news/audits-cannot-guarantee-defi-exploits.
Accessed November 2023.

[54] Siraphob Phipathananunth. Using Mutations to Analyze Formal Spec-
ifications. In Companion Proceedings of the 2022 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, SPLASH Companion 2022, pages
81–83, New York, NY, USA, December 2022. Association for Comput-
ing Machinery.

[55] John Rushby. Theorem proving for verification. In Summer School on
Modeling and Verification of Parallel Processes, pages 39–57. Springer,
2000.

[56] solscan.io. Mango Markets Exploiter.
https://solscan.io/account/CQvKSNnYtPTZfQRQ5jkHq8q2swJyRsdQL
cFcj3EmKFfX.

[57] Derek Sorensen. Structured pools for tokenized carbon credits. In
2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1–6. IEEE, 2023.

[58] Derek Sorensen. Tokenized carbon credits. Ledger, 9, 2024.
[59] Tianyu Sun and Wensheng Yu. A formal verification framework for

security issues of blockchain smart contracts. Electronics, 9(2):255,
2020.

[60] John Symons and Jack K Horner. Why there is no general solution to the
problem of software verification. Foundations of Science, 25:541–557,
2020.

[61] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A
Survey of Smart Contract Formal Specification and Verification. ACM
Comput. Surv., 54(7):148:1–148:38, July 2021.

[62] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li.
A survey of smart contract formal specification and verification. ACM
Computing Surveys (CSUR), 54(7):1–38, 2021.

[63] Fabian Vogelsteller and Vitalik Buterin. Erc-20 token stan-
dard. https://github.com/ethereum/ercs/blob/master/ERCS/erc-20.md.
Accessed December 2023.

[64] Shermin Voshmgir, Michael Zargham, et al. Foundations of cryptoe-
conomic systems. Research Institute for Cryptoeconomics, Vienna,
Working Paper Series/Institute for Cryptoeconomics/Interdisciplinary
Research, 1, 2019.

[65] Shuai Wang, Wenwen Ding, Juanjuan Li, Yong Yuan, Liwei Ouyang,
and Fei-Yue Wang. Decentralized autonomous organizations: Concept,
model, and applications. IEEE Transactions on Computational Social
Systems, 6(5):870–878, 2019.

[66] Jeannette M Wing. A specifier’s introduction to formal methods.
Computer, 23(9):8–22, 1990.

[67] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzger-
ald. Formal methods: Practice and experience. ACM computing surveys
(CSUR), 41(4):1–36, 2009.

[68] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok:
Decentralized exchanges (dex) with automated market maker (amm)
protocols. ACM Computing Surveys, 55(11):1–50, 2023.

[69] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK:
Decentralized Exchanges (DEX) with Automated Market Maker (AMM)
Protocols. ACM Comput. Surv., 55(11):238:1–238:50, February 2023.

[70] Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and
Javier Dı́az. Djed: A formally verified crypto-backed autonomous sta-
blecoin protocol. In 2023 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pages 1–9. IEEE, 2023.

[71] Hans J Zassenhaus. The theory of groups. Courier Corporation, 2013.
[72] Yi Zhang, Xiaohong Chen, and Daejun Park. Formal specification

of constant product (xy= k) market maker model and implementation.
White paper, 2018.

[73] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng
Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and
Arthur Gervais. SoK: Decentralized Finance (DeFi) Attacks, April 2023.

